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Abstract
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Introduction

Empirical researchers working with observational data rely on covariate adjustment to an-

alyze causal effects. Selecting just the right covariates for conditioning is essential for the

elimination of confounding bias. Until quite recently, the prevailing wisdom in political sci-

ence and much of economics held that one should condition on all available covariates in

the hopes of minimizing the bias caused by omitted confounders. Research conducted across

a variety of domains has eroded that belief, and many now admit that overadjustment—

conditioning on covariates that increase bias—is a real possibility. Nevertheless, there remain

scholars, Pearl (2010) writes of those in the “experimentalist” camp, who deride the notion

that in some cases a researcher should not condition on all available covariates (see, for

example, Rubin, 2009).

The problem of covariate selection is made more difficult by the realization that the

set of covariates available for adjustment is a subset of the set of all relevant covariates.

That is, the effect on the bias of including an additional covariate in the conditioning set

may be determined, in part, by variables unavailable to the analyst (Clarke, 2005, 2009;

DeLuca, Magnus and Peracchi, 2015). Our goal in this paper is to characterize more fully the

conditions under which the interaction between a covariate that is available for conditioning

and a covariate that is not can affect confounding bias.

Our discussion takes place within the potential outcomes framework (the Appendix con-

tains a brief primer) and is related to the bias-amplification literature (Pearl, 2010; White

and Lu, 2011; Pearl, 2011). “Bias-amplifying” refers to covariates that, if conditioned on,

will increase existing bias. Such variables tend to be those that have greater effects on the

treatment than on the outcome. Pearl (2010), building on work by Bhattacharya and Vogt

(2007) and Wooldridge (2009), demonstrates that instrumental variables are bias-amplifying.

That is, by including an instrumental variable (IV) in a conditioning set, one will increase
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any existing confounding bias.

We analyze a different situation where an available confounder and an unavailable con-

founder have countervailing effects. That is, we consider the case where the confounding

effects of the two variables are in opposite directions, but do not offset each other exactly.

Under these conditions, including the available confounder in the conditioning set increases

the bias. We first demonstrate this possibility analytically, and then we show that these con-

ditions occur in applications. In addition, we consider whether balance tests or sensitivity

analysis can be used to justify the inclusion of additional covariates. Our results show that it

is possible for a covariate to improve balance while increasing bias. Finally, we demonstrate

that sensitivity analysis cannot alert us to the possibility of countervailing effects because

sensitivity analysis addresses a different question.

Our findings lend little credence to the claim that a researcher should condition on all

available pretreatment covariates. Which variables should be included in a data analysis

depends on factors that vary from situation to situation. We can tackle the problem using

theory, judgement, and common sense, and we end with a discussion of how our results can

be helpful to researchers.

1 Analysis

We use a simple analytical example to illustrate the conditions under which conditioning

on an observed variable can increase the bias in treatment effect estimation. Our analysis

closely follows that of Pearl (2010). The main difference is that we assume the treatment

variable is binary, as in the prototypical examples of causal inference in political science (e.g.,

Ho et al., 2007).1 Whereas Pearl focuses on the bias amplification properties of instrumental

variables—those that affect treatment assignment but not the outcome—we characterize the

1We ran several Monte Carlo experiments that use continuous explanatory variables that are consistent
with our analytic results.
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conditions under which adjusting for a true confounder can increase bias. If an observed

confounder and an unobserved confounder have countervailing effects, a condition we define

formally below, then controlling for the observed variable may worsen the bias of a treatment

effect estimator.

Assume there are two covariates: X, which is observed, and U , which is not. Each is

drawn independently from a Bernoulli distribution with probability 1
2
. There is a binary

treatment T , whose probability is a linear function of the covariates:

Pr(T = 1) =
1

2
+ γXX + γUU, (1)

where |γX | < 1
2
, |γU | < 1

2
, and |γX + γU | < 1

2
. The outcome Y is a linear function of the

treatment, the covariates, and a white noise random variable ε,

Y = α + τT + βXX + βUU + ε, (2)

where E[ε |T,X, U ] = 0.

The analyst’s goal is to estimate the average treatment effect τ from a sequence of

observations of (Y, T,X). Because U is unobserved, no estimator of τ exists that is unbiased

for all possible sets of parameters (τ, α, γX , γU , βX , βU). The analyst faces a choice between

adjusting for X via some matching or weighting scheme, or estimating τ by an unadjusted

difference of means. The expected value of the naive difference of means estimator is

E[τ̂∅] = E[Y |T = 1]− E[Y |T = 0]

= τ +
βXγX + βUγU
1− (γX + γU)2

.
(3)

The denominator of the second term is strictly positive, so the magnitude of the bias of

this estimator is
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|Bias(τ̂∅)| =
|βXγX + βUγU |
1− (γX + γU)2

. (4)

This estimator is unbiased if and only if neither covariate is a confounder (βXγX =

βUγU = 0), or their contributions to the bias are exactly offsetting (βXγX = −βUγU). This

latter condition proves important when we look at when it is worse, in terms of bias, to

control for X.

Now consider an estimator that conditions on the observed variable X. Because X is

binary, a natural way to estimate the treatment effect is by subclassification (Rosenbaum

and Rubin, 1983a): take the average of the within-group differences of means, where the

groups are defined by the values of X.2 The expected value of this estimator is

E[τ̂X ] =
1

2
(E[Y |T = 1, X = 1]− E[Y |T = 0, X = 1])

+
1

2
(E[Y |T = 1, X = 0]− E[Y |T = 0, X = 0])

= τ +
βUγU

2

(
1

1− (2γX + γU)2
+

1

1− γ2U

)
.

(5)

Therefore, the magnitude of the bias when adjusting for the observed variable X via sub-

classification is

|Bias(τ̂X)| = |βUγU |
2

(
1

1− (2γX + γU)2
+

1

1− γ2U

)
. (6)

This estimator is unbiased if and only if U is not a confounder (βUγU = 0).

We can now find the parameters under which the naive estimator is less biased than the

one that conditions on the observed covariate X. Controlling for X worsens the bias when

the following inequality holds:

2If we weighted the average by the observed proportion of observations in each group (X = 0 and X = 1),
then equation (5) only gives the asymptotic bias.
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Figure 1: Numerical illustration of the conditions under which the naive difference of means
estimator is less biased than one that conditions on the observed variable X. The effects
on treatment assignment are held fixed at γX = γU = 1/8, so the countervailing effects
condition holds when βX and βU have opposite signs.
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|βUγU |
2

(
1

1− (2γX + γU)2
+

1

1− γ2U

)
≥ |βXγX + βUγU |

1− (γX + γU)2
. (7)

From this expression we can derive a set of simple sufficient conditions for when it is worse

to condition on X.

Proposition 1 If all of the following conditions hold, then |Bias(τ̂X)| > |Bias(τ̂∅)|.

• U is a confounder: βUγU 6= 0.

• U and X have countervailing effects: βUγU and βXγX have opposite signs.

• The confounding effect of U is at least as great as that of X: |βUγU | ≥ |βXγX |.

The intuition behind the countervailing effects condition is straightforward. If a con-

founding variable increases both the chance of treatment assignment and the expected value

of the outcome, then failing to control for it causes the resulting treatment effect estimate to

be biased upward on average. Conditioning on such a variable will, in expectation, decrease

the estimate of the treatment effect. The same is true of a variable that has a negative rela-

tionship with both treatment assignment and the outcome. Conversely, if a variable reduces

the chance of treatment and increases the expected outcome (or vice versa), then failing

to control for it leads to a downward bias in the treatment effect estimate. Countervailing

effects means that the confounding effects of X and U go in opposite directions—that omit-

ting one biases the estimated treatment effect downward, while omitting the other biases it

upward.

When the confounding effects of the two variables are countervailing and the magnitude of

the unobserved variable U ’s effect is greater, it is worse to condition on the observed variable

X. To see why, imagine that U has a strong positive effect on both treatment assignment

and the outcome, while X has a weak negative effect on treatment assignment and a weak

positive effect on the outcome. In isolation, failing to control only for U would bias the
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estimated treatment effect upward, while failing to control only for X would bias it slightly

downward. Failing to control for either results in a moderate upward bias. Controlling for

X without controlling for U (because the latter is unobserved) would on average cause the

estimated treatment effect to go up—the wrong direction.

2 Empirical examples

Our analytic results identify conditions under which adjusting for all available pre-treatment

variables could lead to an increase in the bias of estimated treatment effects. When con-

sidering whether to condition on a variable, a researcher must take two sets of factors into

account. The first is the potential effects of an unobserved confounder on treatment and

outcome, and the second is the size of those effects relative to those of the conditioning

variable.

In this section, we go beyond our analytic results and demonstrate that countervailing

effects are not a mathematical curiosity, but a problem that occurs with regularity in appli-

cations. We use two well-known data sets to make the point. At the same time, we consider

whether balance tests, frequently used to justify the inclusion of covariates, provide a false

sense of security when countervailing effects are present.

We examine these issues using two different data sets. The first is the well-known study

of the impact of the National Support Work Demonstration (NSW) labor training program

on post-intervention income (LaLonde, 1986). The NSW was implemented in the 1970s to

provide work experience to the poor. The data set is used widely to evaluate the perfor-

mance of treatment effect estimators for observational data because the effects of NSW on

income were evaluated experimentally. Researchers can therefore compare their estimates

with the experimental benchmark (LaLonde, 1986; Dehejia and Wahba, 1999). In his origi-

nal study, LaLonde used individuals from the Current Population Survey (CPS) as control
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units for comparison. We use the CPS control units plus the original treated ones for our

demonstration.3

The data set contains pairs of variables that could be X and U and that simultane-

ously satisfy three conditions: 1) they have countervailing effects, 2) balance improves when

conditioning on X, and 3) the bias on the estimated ATT increases when X is included

in the conditioning set. Given that we are using observational data, we do not know the

true effects of a given pair X and U on the outcome and treatment, which prevent us from

knowing whether such effects are countervailing. To circumvent this problem, we estimate

these effects by relying on the propensity score specification that gave Dehejia and Wahba

(1999) the closest ATT estimate to the experimental benchmark.4

To clarify, consider the pair of variables u74 (1 if there are no reported earnings in 1974

and 0 otherwise) and black (1 if the person is black and 0 otherwise). Let u74 be the

potential conditioning variable X, and let black be U , the unobserved variable. In this case,

a researcher interested in evaluating the training program must decide whether to include

u74 in the conditioning set when information on race, black, is not available. Note that it

is entirely reasonable to control for whether a person reported zero earnings previously, as

this variable could proxy for unobserved characteristics that determine her future salaries.

Using Dehejia and Wahba’s specification (the one that gives the best estimate of the

ATT with these data), we find that the effect of black on income is negative, while its effect

on treatment assignment is positive. The estimated effect of u74 is positive for both income

and treatment, although the coefficient in the income equation is small and not significant.5

Importantly, we find that the confounding effect black is larger than that of u74. We expect

3The data set is included in the R package of Random Recursive Partitioning (Iacus, 2007). It has a total
of 16, 177 observations with no missingness on the variables from the original study. For a description of the
data set see Dehejia and Wahba (1999, 1054)

4The specification includes the variables: age, age2, age3, education, education2, no degree, married,
black, hispanic, re74, re75 (real earnings in 1974 and 1975), u74, u75 (indicators of zero earnings in 1974
and 1975), and education× re74.

5The estimated linear regression coefficients are: β̂U = −574.4, γ̂U = 0.103, β̂X = 365.9, and γ̂X = 0.045.
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that the bias to increase after adjusting for u74, in concert with our analytic results, and

that is what we observe when estimating the ATT using caliper matching.6 The bias on the

estimated ATT is $691 larger when we include u74 in the propensity score than when we

do not. This bias is 38.50% of the experimental treatment effect. We also perform balance

tests after matching with and without u74. We find that by including u74, the p-values on

the equality of means t-tests between treated and untreated matched units increases for 7

variables (out of a total of 12 covariates common to both specifications). These balance tests

results could be used as justification for including u74 when in fact it increases bias.

Table 1: Labor training program example (Countervailing effects and balance test)

sgn(β̂U γ̂U) sgn(β̂X γ̂X) Unobserved (U) Added variable (X) ∆ Bias/ATT Vars. p-val increased
Total

1 − + black u74 0.385 7/12
2 + − no degree married 0.145 7/12
3 + − no degree education2 0.114 7/12
4 + − no degree re74 0.11 7/12
5 + − education age 0.096 4/10
6 − + u75 no degree 0.084 6/11
7 − + re75 no degree 0.084 6/11
8 + − education age2 0.077 7/10
9 − + black no degree 0.063 8/12
10 − + married no degree 0.06 9/12
11 − + age education 0.059 8/10
12 − + age u74 0.053 8/10
13 + − education age3 0.048 6/10
14 + − no degree age2 0.015 7/12
15 − + married u74 0.014 9/12
16 + − no degree education× re74 0.008 5/12
17 − + black education 0.007 8/12

The column ∆ Bias/ATT is the increase in bias after adjusting on X as a fraction of the exper-
imental average treatment effect. Last column gives the fraction of control variables that had
an increase in the p-value of an equality of means test between treated and control units after
controlling for X. black = 1 if black, 0 otherwise; no degree = 1 if no high school degree, 0
otherwise; married = 1 if married, 0 otherwise; age is age in years; re74 is real earnings in 1974;
re75 is real earnings in 1975; u74 = 1 if earnings in 1974 are 0, 0 otherwise, and u75 = 1 if
earnings in 1975 are 0, 0 otherwise.

black and u74 are not a unique pair. Table 1 shows 16 other cases where a countervailing

6The treatment units are matched with the closest control unit that is within 0.25 standard deviations of
the linear prediction of the propensity score.
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effect is present and including X improves balance for a number of covariates, but increases

bias. The first two columns contain the sign of the product of the estimated effects of U and

X on treatment and outcome that identify the countervailing effect. The remaining columns

contain the variables that stand in for X and U , the increase in bias as a fraction of the

ATT when adjusting for X, and the fraction of variables whose p-values, in a equality of

means test between treated and control matched units, increase when adjusting for X. In

half of the cases, the increase in bias is larger than 7% of the true ATT (rows are ordered by

the relative size of the bias from largest to smallest). Moreover, the average fraction of the

covariates whose balance improves after adjusting for the additional variable is 0.62. These

results indicate that countervailing effects associated with increases in bias are not rare in

these data, and that improving balance by conditioning on an additional covariate does not

necessarily mean reducing bias.

We ran the same analysis using a separate data set and found similar results. As before,

we need a data set that includes an experimental benchmark. The data come from Mackenzie,

Gibson and Stillman (2010), in which the authors study the effect of migration on income.7

They focus on New Zealand, which uses a random ballot to choose among the excess number

of Tongan immigration applicants. Unlike the previous example, the authors find that non-

experimental methods (other than instrumental variables estimation) overstate the effect of

migration by 20%-82%. For our purposes, we use the specification that gave them the closest

estimate of the experimental effect using observational methods.8

7To the best of our knowledge, the only studies with political science applications that include experi-
mental and non-experimental measures of treatment effects are Arceneaux, Gerber and Green (2006) and
Arceneaux, Gerber and Green (2010). These papers, however, did not find that observational methods were
able to approximate the experimental estimates. Although observational methods did not recover the ex-
perimental estimate in Mackenzie, Gibson and Stillman (2010) either, their results under some specifications
of the propensity score were closer to the experimental estimate than the results in the Arceneaux, Gerber,
and Green papers.

8The specification includes the variables: age, age2, age3, age4, born Tongatapu, height, male, married,
past income, education, education2, education3, education4, male×age, male×education, male×married,
male× born Tongatapu, male× past income, male× height, age× education. For a complete description
of the data see (Mackenzie, Gibson and Stillman, 2010, 918).
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Table 2: Migration example (Countervailing effects and balance test)

sgn(β̂U γ̂U) sgnβ̂X(γ̂X) Unobserved (U) Added variable (X) ∆ Bias/ATT Vars. p-val increased
Total

1 − + height male× education 0.078 2/17
2 − + height male 0.063 1/17
3 + − education age 0.058 8/13
4 + − education age2 0.054 8/13
5 + − education past income 0.049 10/13
6 + − education age3 0.048 6/13
7 − + past income male× education 0.048 9/17
8 − + past income male×married 0.047 4/17
9 − + height education4 0.045 3/17
10 − + past income male× height 0.039 11/17
11 − + male× age age4 0.037 8/12
12 + − male age3 0.032 6/12
13 + − male age 0.03 9/12
14 + − male age2 0.03 11/12
15 + − married past income 0.026 9/17
16 − + height married 0.025 7/17
17 − + age born Tongatapu 0.024 12/13
18 − + male× age born Tongatapu 0.021 3/12
19 − + height education 0.019 3/17
20 − + height education3 0.014 2/17
21 − + height born Tongatapu 0.01 8/17
22 + − born Tongatapu past income 0.007 7/17
23 + − age4 past income 0.006 4/13
24 − + height age× education 0.004 9/17
25 + − born Tongatapu male× age 0.003 6/17
26 − + age male× height 0.002 12/13
27 + − education male× age 0.001 3/13
28 + − education3 male× age 0.001 3/13

The column ∆ Bias/ATT is the increase in bias after adjusting on X as a fraction of the ex-
perimental average treatment effect. Last column gives the fraction of control variables that
had an increase in the p-value of an equality of means test between treated and control units
after controlling for X. age is age in years; born Tongatapu=1 if born in Tongatapu, 0 other-
wise; education is years of education; male = 1 if male, 0 otherwise; married=1 if married, 0
otherwise; past income is past income in NZ dollars per week.
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The results are in Table 2. There are 28 cases where bias increases after adjusting for a

covariate when countervailing effects are present. The increases in bias are generally smaller

than in the labor training example reaching a maximum of 8% of the ATT. For the 28

cases, the average fraction of control variables where balance improved after adjusting for

an additional covariate was 0.45.

Note that for some combinations of X and U it seems intuitive to adjust for the addi-

tional regressor. Consider, however, row 17 where age is the unobserved variable, and the

researcher is considering whether to include an indicator of being born in Tongatapu—the

most populous island in Tonga. Living in Tongatapu is likely to affect both income and

the likelihood of migration positively, as its residents benefit from a more dynamic economy

and are more exposed to the outside world than residents of other Tongan islands. If we

ignore other potential confounders, it would appear that not adjusting for this variable would

overstate the effect of migration. However, the fact that age has a large positive income,

but a negative effect on migration makes conditioning on being born in Tongatapu bad for

estimation. Conditioning on born Tongatapu increases bias by further decreasing an already

understated ATT.

Whether countervailing effects exist with magnitudes of the correct size depends on the

application at hand. The demonstrations above show that in at least two applications, it

is easy to find the conditions highlighted in our theoretic results. Moreover, we show that

adjusting for an additional covariate can improve balance without reducing bias. The intu-

ition is that even if balance improves among most of the observed covariates when adjusting

for an additional variable, nothing guarantees that the same would happen for unobserved

confounders. The differences in the distributions of relevant unobservables between treated

and untreated units that remain continue biasing the estimates of interest regardless of the

improved balance among observables.
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3 Sensitivity analysis

Discussions concerning causal analysis and the effects of unobserved confounders naturally

lead to calls for sensitivity analysis. An unobserved covariate that has countervailing effects

with a covariate for which we have adjusted could, if we observed it, change our estimate of

the treatment effect. If we could show that an unobserved covariate does not exist, then we

would have more confidence in our estimate of the treatment effect.

Unfortunately, sensitivity analysis, which goes back to Cornfield et al. (1959) and was

further developed by Rosenbaum and Rubin (1983b) and Rosenbaum (1988), cannot tell

us whether a unobserved variable exists, and it cannot tell us whether that variable has

countervailing effects. Sensitivity analysis addresses a different, but related, question: how

large an effect must an unobserved covariate have before it changes our treatment estimate.

The distinction in subtle. The question sensitivity analysis addresses is not whether an

unobserved covariate exists, but how powerful it would be if it existed.

To make this point concrete, we apply sensitivity analysis to the Dehejia and Wahba

(1999) specification that comes closest to the LaLonde experimental benchmark (see footnote

3). The method we use works with either regression or propensity scores and comes from

Hosman, Hansen and Holland (2010). First, we briefly describe the approach.

Consider a regression

y = α + τUT + Xβ + βUU + ε

where τ is the coefficient of interest, X is the conditioning set and includes the newly added

covariate. As before, U is unobserved. The researcher, however, can only run,

y = α + τno UT + Xβ + ε
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where the unobserved variable U is omitted. The sensitivity analysis quantifies how large

an effect U must have, when included in the regression, before the true treatment effect, τ̂ ,

changes substantively.9

The bias on τ̂ caused by a possibly omitted variable U is a function of U ’s confounding

with the treatment and U ’s effect on the dependent variable. The Hosman, Hansen and

Holland (2010) method generates sensitivity intervals for τ̂ that are a function of these

two effects. Confounding is measured by the t-statistics from a regression of T on the other

regressors. We denote confoundedness of U with the treatment of interest as tU . U ’s effect on

the dependent variable is measured by the proportionate reduction in unexplained variance

when U is included in the regression,

ρ2y·u|tx =
(1−R2

no U)− (1−R2
U)

(1−R2
no U)

Note that neither the t-statistics nor ρ2y·u|tx are used for inferential purposes. Both values

simply describe the relationships between the possibly omitted variable U and either the

treatment or the dependent variable.

Hosman, Hansen and Holland (2010) prove that the omitted variable bias can be written

as a product of the two effects described above and the standard error on τ̂ ,

τ̂no U − τ̂U = SE(τ̂)tUρy·u|tx

provided R2
y·u|tx < 1 and tU is finite. They go on to prove, under the same conditions, that

the same statistics can be used to express the effect of omitting U on the standard error

SE(τ̂U) = SE(τ̂no U)

√
1 +

1 + t2U
df− 1

√
1− ρ2y·u|tx

9We write of a single omitted variable, U , for convenience. We can, however, think of U as being a
combination of two or more omitted variables without doing damage to the argument. See Hosman, Hansen
and Holland (2010, 861).

14



where df = n− rank(X)− 1, the residual degrees of freedom after Y is regressed on X and

the treatment. Taken together, these results allow the specification of a union of interval

estimates

τ̂U ± q SE(τ̂U) : |tU | ≤ T, ρ2y·u|tx ≤ R

for any nonnegative limits T and R.10 The union is the collection of τ̂U values falling into

the interval after adding the omitted variable U .

Table 3: 95% sensitivity intervals with the unobserved variable’s treatment confounding
hypothesized to be no greater than the treatment confounding of the variables deliberately
omitted below. The decrease in unexplained variance is hypothesized to be no greater than
5%.

Variable 5%
Age -2628.5, 293.3
Education -2599.7, 382.3
Black -2458.3, 899.6
Hispanic -2906.7, 582.4
Married -3358.8, 1104.7
No degree -3181.7, 676.0
Income 74 -3622.5, 1985.8
Income 75 -8840.5, 4660.6

U is unobserved. Hosman, Hansen and Holland (2010) suggest choosing values for tU

and ρ2y·u|tx by benchmarking: treating the observed covariates one at a time as being the

unobserved covariate U and collecting values for tU and ρ2y·u|tx to use as guides. When using

propensity scores, they suggest removing the covariates one at time and then resubclassifying

the sample using the modified propensity score. T is then regressed on the withheld covariate

and on the propensity strata to get a t statistic for that covariate.

The results of the sensitivity analysis are in Table 3. For each variable, the sensitivity

interval comfortably brackets 0, which means that if an unobserved variable existed that

10See Hosman, Hansen and Holland (2010) for derivations and proofs.
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had similar sized effects on the treatment and the outcome as, for example, married, its

inclusion in the conditioning set would change our beliefs about the treatment effect. Note

that we get this result despite using the Dehejia and Wahba specification. The sensitivity

analysis is not telling us that unobserved covariates exist that might change our findings,

but that if unobserved covariates exist, and they had effects similar in size to the variables

in Table 3, then our findings would be in jeopardy. Sensitivity analysis cannot tell us about

countervailing effects because it addresses a different question.

4 Discussion

Researchers working with observational data have to make decisions regarding covariate ad-

justment. When making these decisions, researchers have to consider the covariates to which

they have access as well as the covariates to which they do not. Our analytic results show

that if two variables, one observed and one unobserved, have countervailing effects, and we

condition on the observed variable, we may increase confounding bias. Our empirical results

show, using two data sets, that pairs of variables having countervailing effects are not rare.

Finally, we showed that balance tests cannot be used to justify the inclusion of additional

covariates and that sensitivity analysis cannot alert us to the presence of countervailing ef-

fects. It is possible to increase balance by conditioning on a covariate while at the same time

increasing bias. Sensitivity analysis answers a different question.

We have yet to address how researchers can best make use of our findings. Our results

indicate that researchers cannot rely on advice such as condition on all pre-treatment covari-

ates or on balance and sensitivity tests. Some progress can be made if we consider the two

kinds of unobserved covariates that plague empirical analyses. To paraphrase Donald Rums-

feld (Morris, 2010), there are known unknowns and unknown unknowns. That is, there are

covariates, perhaps suggested by theory, that cannot be measured or perhaps measurement
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is infeasible. These are the known unknown covariates. A researcher can hypothesize about

the relationships of such a covariate with previously included variables and any variables

that are candidates for inclusion. Our results provide some guidance in such a situation. If

the candidate covariate and the unobserved covariate have countervailing effects, a case can

be made for leaving the candidate covariate unadjusted.

On the other hand, there exist, in Rumsfeldian terms, unknown unknown covariates.

These are variables that have not been suggested by theory and have not crossed the mind

of the researcher in question (or anyone else). In such a case, no theorizing can take place, and

our results demonstrate that including a new covariate in a conditioning set may increase

or decrease the bias on the treatment estimate. Sensitivity analysis that explicitly takes

unobserved covariates into account is of little use. The only surefire response a researcher has

to the problem discussed in this paper is to be modest in the claims she makes based on her

results. Scientific progress is rarely the result of a single study, and empirical generalizations

are accepted only after many repeated demonstrations across varying spatial and temporal

domains.

A Appendices

The debate takes place within the context of the potential outcomes framework. Let Yi1 be

the value of the response variable when unit i receives the treatment (Ti = 1), and let Yi0 be

the value of the response variable when unit i does not receive the treatment (Ti = 0). Yi1

and Yi0 are potential outcomes as they cannot be observed simultaneously for unit i. The

observed outcome is Yi = TiYi1 + (1 − Ti)Yi0, and the effect of the treatment for unit i is

τi = Yi1 − Yi0. As the individual-level causal effects generally cannot be estimated, interest

centers on the ATE:
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E[τi] = E[Yi1 − Yi0].11 (8)

Equation (1) is estimable under the the stable unit treatment value assumption (SUTVA),

which states if unit i receives treatment j, the observed value of Y is Yij (no interference

between units and no variation in treatment) (Rubin, 1980, 591).

In observational studies, focus moves to the ATE conditional on a set of observed pre-

treatment covariates X:

τ = E[Yi|Xi, Ti = 1]− E[Yi|Xi, Ti = 0]. (9)

Equation (9) can be used to consistently estimate the ATE when treatment is said to be

strongly ignorable. That is, the potential outcomes and the treatment must be independent

within levels of the covariates,

{Yi1, Yi0}⊥⊥Ti|Xi, (10)

and for every value of X there are treated and nontreated cases, 0 < Pr(Ti = 1|Xi) < 1, for

all Xi. If unobserved confounding variables exist that are not included in X, as is likely in

an observational study, any estimator of the ATE will be biased.

Rosenbaum and Rubin (1983a) show that if the set of covariates is of high dimension,

thereby creating a problem for techniques such as matching, one can condition on the propen-

sity score, which is the probability of assignment to treatment, conditional on the set of

covariates, e(Xi) = Pr(Ti = 1|Xi). Free of behavioral assumptions, the propensity score is

generally estimated with a simple logit model:

Pr(Ti = 1|Xi) =
eβh(Xi)

1 + eβh(Xi)
,

11We will also be interested in the average treatment effect on the treated (ATT): E[Yi1 − Yi0|Ti = 1].
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where h(X) comprises linear and higher order terms of the pretreatment covariates, and β

is the set of parameters to be estimated.

A.1 Full Derivations

E[X |T = 1] =
Pr(T = 1 |X = 1) Pr(X = 1)

Pr(T = 1)
=

(1
2

+ γX + 1
2
γU)(1

2
)

1
2

+ 1
2
γX + 1

2
γU

(11)

E[X |T = 0] =
Pr(T = 0 |X = 1) Pr(X = 1)

Pr(T = 0)
=

(1
2
− γX − 1

2
γU)(1

2
)

1
2
− 1

2
γX − 1

2
γU

(12)

E[U |T = 1] =
Pr(T = 1 |U = 1) Pr(U = 1)

Pr(T = 1)
=

(1
2

+ 1
2
γX + γU)(1

2
)

1
2

+ 1
2
γX + 1

2
γU

(13)

E[U |T = 0] =
Pr(T = 0 |U = 1) Pr(U = 1)

Pr(T = 0)
=

(1
2
− 1

2
γX − γU)(1

2
)

1
2
− 1

2
γX − 1

2
γU

(14)

E[U |T = 1, X = 1] =
Pr(T = 1 |X = 1, U = 1) Pr(X = 1, U = 1)

Pr(T = 1 |X = 1) Pr(X = 1)

=
(1
2

+ γX + γU)(1
4
)

(1
2

+ γX + 1
2
γU)(1

2
)

(15)

E[U |T = 0, X = 1] =
Pr(T = 0 |X = 1, U = 1) Pr(X = 1, U = 1)

Pr(T = 0 |X = 1) Pr(X = 1)

=
(1
2
− γX − γU)(1

4
)

(1
2
− γX − 1

2
γU)(1

2
)

(16)

E[U |T = 1, X = 0] =
Pr(T = 1 |X = 0, U = 1) Pr(X = 0, U = 1)

Pr(T = 1 |X = 0) Pr(X = 0)

=
(1
2

+ γU)(1
4
)

(1
2

+ 1
2
γU)(1

2
)

(17)

E[U |T = 0, X = 0] =
Pr(T = 0 |X = 0, U = 1) Pr(X = 0, U = 1)

Pr(T = 0 |X = 0) Pr(X = 0)

=
(1
2
− γU)(1

4
)

(1
2
− 1

2
γU)(1

2
)

(18)
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Proof of Proposition 1

Let f(c) = 1 − (cγX + γU)2. This function is strictly concave. Moreover, we have |γU | < 1

and, by the triangle inequality, |2γX + γU | ≤ |γX | + |γX + γU | < 1, so f is strictly positive

on [0, 2]. Let g(c) = 1/f(c) be the reciprocal of f . We have

g′′(c) =
2f ′(c)2

f(c)3
− f ′′(c)

f(c)2
,

so g is strictly convex on [0, 2]. Consequently, we have 1
2
(g(0) + g(2)) > g(1) and thus

1

2

(
1

1− (2γX + γU)2

)
+

1

2

(
1

1− γ2U

)
>

1

1− (γX + γU)2
.

If |βUγU | ≥ |βXγX | and sgn(βUγU) = − sgn(βXγX), then |βUγU | ≥ |βXγX + βUγU | and thus

|βUγU |
2

(
1

1− (2γX + γU)2
+

1

1− γ2U

)
≥ |βXγX + βUγU |

1− (γX + γU)2
,

holding strictly as long as βUγU 6= 0.
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