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A Identification: Proof of Theorem 1

We first argue that β0 is identified. By (A2), Fv has strictly positive mass on

{(v, s) | There exist i1, i2, i3 with vi1 > vi2 > vi3 > 0 and si3 > 0}.

For all (v, s) in that set, the conditional distribution of seats for the two top vote-getting

parties (without loss of generality parties 1 and 2) satisfies

(s1, s2) ∼ Binomial(
vβ0

1

vβ0

1 + vβ0

2

,
vβ0

2

vβ0

1 + vβ0

2

; s1 + s2).

This is because within that subset of data, the threshold is known to be below vi3 < vi, i =

1, 2, so that the conditional distribution of seats for parties 1 and 2 given the remaining

allocation follows from the preservation of multinomial sampling under conditioning. Now

β0 is identified from these data as the success probability of the binomial is identified and is

a one-to-one function of β0. So it remains to argue that the threshold parameters θ0, σ0 are

identified. By (A2), we observe (v, s) with v ∈ V3. For such (v, s), let
¯
i = arg mini{vi | vi > 0}

and
¯̄
i = arg mini{vi | vi > v

¯
i}. We have (for general parameters β, θ, σ):

P
(
s
¯
i = 0 | v

)
=

(
1− Φ

(
v
¯
i − θ
σ

))
+ Φ

(
v
¯
i − θ
σ

)(
1− q

¯
i(v, β, 0)

)∑N
i=1 si

P
(
s
¯̄
i = 0 | v

)
=

(
1− Φ

(
v
¯̄
i − θ
σ

))
+

(
Φ

(
v
¯̄
i − θ
σ

)
− Φ

(
v
¯
i − θ
σ

))(
1− q

¯̄
i(v, β, v

¯
i)
)∑N

i=1 si

+ Φ

(
v
¯
i − θ
σ

)(
1− q

¯̄
i(v, β, 0)

)∑N
i=1 si

.
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Solving for Φ
(
v
¯
i−θ
σ

)
,Φ

(
v
¯̄
i−θ

σ

)
we obtain

Φ

(
v
¯
i − θ
σ

)
=S̄i(β | v)

Φ

(
v
¯̄
i − θ
σ

)
=S

¯̄
i(β | v),

where

S̄i(β | v) =
1− P

(
s
¯
i = 0 | v

)
1−

(
1− q

¯
i(v, β, 0)

)∑N
i=1 si

S
¯̄
i(β | v) =

1− P
(
s
¯̄
i = 0 | v

)
+

1−P(s
¯
i=0|v)

1−(1−q
¯
i(v,β,0))

∑N
i=1

si

((
1− q

¯̄
i(v, β, v

¯
i)
)∑N

i=1 si −
(

1− q
¯̄
i(v, β, 0)

)∑N
i=1 si

)
1−

(
1− q

¯̄
i(v, β, v

¯
i)
)∑N

i=1 si
.

With β0 identified, both S̄i(β0 | v) and S
¯̄
i(β0 | v) are identified from the data. It follows

that θ0, σ0 are identified as two quantiles suffice to identify the parameters of the normal

distribution, specifically

θ0 =
v
¯
iΦ
−1
(
S

¯̄
i(β0 | v)

)
− v

¯̄
iΦ
−1
(
S̄i(β0 | v)

)
Φ−1

(
S

¯̄
i(β0 | v)

)
− Φ−1

(
S̄i(β0 | v)

) ,

σ0 =
v
¯̄
i − v

¯
i

Φ−1
(
S

¯̄
i(β0 | v)

)
− Φ−1

(
S̄i(β0 | v)

) .
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B MAP-EM Estimator

With complete data including the unobserved Z = {zt}Tt=1 and Θ∗ = {θ∗t }Tt=1, the

data-augmented log-likelihood is given by (8) of the main text. The m + 1-th MAP-EM

estimator steps consist of:

1. Expectation (E-step):

Q(θ, σ, β; θm, σm, βm) = EZ,Θ∗ [L(θ, σ, β | X,Z,Θ∗) | X, θm, σm, βm] .

2. Maximization (M-step):

(θm+1, σm+1, βm+1) = arg max
(θ,σ,β)

{Q(θ, σ, β; θm, σm, βm) + p(θ, σ, β)}.

Recall that the prior p(θ, σ, β) is given by (7) in the main text. To execute the Expectation

step, note that the probability of zt conditional on X, θm, σm, βm takes the form

P(zt | X, θm, σm, βm) =
p(zt | vt, θm, σm)p(st | vt, βm, ut,zt)∑nt

z′t=1 p(z
′
t | vt, θm, σm)p(st | vt, βm, ut,z′t)

,

by an application of Bayes’ rule. Furthermore,

P(θ∗t | X,Z, θm, σm, βm) =
I(`t,zt ,ut,zt ](θ

∗
t )f(θ∗t | θ, σ)

p(zt | vt, θ, σ)
.

We can then compute Q(θ, σ, β; θm, σm, βm) as follows:
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Q(θ, σ, β; θm, σm, βm) =
T∑
t=1

nt∑
zt=1

p(st | vt, βm, ut,zt)
h(Xt | θm, σm, βm)

∫ ut,zt

`t,zt

log(p(st | vt, β, ut,zt))f(θ∗t | θm, σm)dθ∗t

+
T∑
t=1

nt∑
zt=1

p(st | vt, βm, ut,zt)
h(Xt | θm, σm, βm)

∫ ut,zt

`t,zt

log(f(θ∗t | θ, σ))f(θ∗t | θm, σm)dθ∗t

=
T∑
t=1

nt∑
zt=1

p(st | vt, βm, ut,zt)
h(Xt | θm, σm, βm)

Ezt [1 | θm, σm]
N∑
i=zt

st,i log

(
vβt,i∑N
j=zt

vβt,j

)

+
T∑
t=1

nt∑
zt=1

p(st | vt, βm, ut,zt)
h(Xt | θm, σm, βm)

θ

σ2
Ezt [θ∗t | θm, σm]

−
T∑
t=1

nt∑
zt=1

p(st | vt, βm, ut,zt)
h(Xt | θm, σm, βm)

1

2σ2
Ezt [θ∗t

2 | θm, σm]

−T
(

log(
√

2πσ) +
θ2

2σ2

)
,

where h(Xt | θm, σm, βm) =
∑nt

z′t=1 p(z
′
t | vt, θm, σm)p(st | vt, βm, ut,z′t), Xt = (st, vt), and with

the expectation terms taking the form

(1) Ezt [θ∗
p
t | θm, σm] :=

∫ ut,zt

`t,zt

θ∗ptf(θ∗t | θm, σm)dθ∗t , p = 0, 1, 2.

These are available in closed form (see online Appendix F).

To execute the Maximization step, we compute the first order conditions for a maxi-

mum, taking first partial derivatives:

∂Q(θ, σ, β; θm, σm, βm) + p(θ, σ, β)

∂θ
=

T∑
t=1

nt∑
zt=1

p(st | vt, βm, ut,zt)
h(Xt | θm, σm, βm)

1

σ2
Ezt [θ∗t | θm, σm]− κ(θ − µ) + Tθ)

σ2
,
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∂Q(θ, σ, β; θm, σm, βm) + p(θ, σ, β)

∂σ
= −

T∑
t=1

nt∑
zt=1

p(st | vt, βm, ut,zt)
h(Xt | θm, σm, βm)

2θ

σ3
Ezt [θ∗t | θm, σm]

+
T∑
t=1

nt∑
zt=1

p(st | vt, βm, ut,zt)
h(Xt | θm, σm, βm)

1

σ3
Ezt [θ∗t

2 | θm, σm]

−T + ν + 3

σ
+
Tθ2 + κ(θ − µ)2 + s2

σ3
,

and

∂Q(θ, σ, β; θm, σm, βm) + p(θ, σ, β)

∂β
=

T∑
t=1

nt∑
zt=1

p(st | vt, βm, ut,zt)
h(Xt | θm, σm, βm)

Ezt [1 | θm, σm]×

N∑
i=zt

st,i

(
log(vt,i)−

∑N
j=zt

vβt,j log(vt,j)∑N
j=zt

vβt,j

)
.(2)

Therefore, the updated iterates θm+1 and σm+1 are obtained as in equations (9) and

(10) of the main text by solving the corresponding first order conditions. It is not possible

to solve analytically for βm+1, and we obtain it numerically by solving a single non-linear

equation setting (2) to zero. We use Newton’s method for that purpose1 and the cross partial

second derivative used is given by:

∂2Q(θ, σ, β; θm, σm, βm)

∂β∂β
= −

T∑
t=1

nt∑
zt=1

p(st | vt, βm, ut,zt)
h(Xt | θm, σm, βm)

Ezt [1 | θm, σm]
N∑
i=zt

st,i ×∑N
j=zt

vβt,j log(vt,j)
2∑N

j=zt
vβt,j

−

(∑N
j=zt

vβt,j log(vt,j)∑N
j=zt

vβt,j

)2
 .

1We use a MATLAB implementation of Newton’s method in the CompEcon Toolbox by

Miranda and Fackler (2002).
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With regard to the priors, we opt for a vague prior for σ by setting ν = s2 = 2. This amounts

to an InverseGamma(1, 1) distribution and a prior mode at 1
2

for σ2. This choice bounds

our estimates of the nuisance parameter away from zero. We also set µ = 0 and κ = 1
100

,

the latter being the value chosen by Fraley and Raftery (2007) in their implementation. In

combination, these two choices mildly bias our estimates towards zero expected thresholds.

We monitor convergence by measuring the distance between successive iterates and

terminate the algorithm when this distance is less than 10−9. To safeguard against isolating

a local maximizer, we initiate the algorithm from different starting values. Specifically, we

take all possible combinations of high, intermediate, and large values of the three parameters

(27 possible combinations) as follows:

• Initial θ ∈ {0,
∑

t=1
v̄t
2T
,
∑

t=1
v̄t
T
},

• initial σ ∈ {min{0.1, se(v̄)
4
}, se(v̄)

2
, se(v̄)},

• and initial β ∈ {.9, 1, 2}.

Here, se(v̄) =

√
1
T

∑T
t=1

(
v̄2
t

12
+ ( v̄t

2
)2
)
−
(∑T

t=1
v̄t
2T

)2

) is the standard deviation of a random

variable that is drawn from the uniform in [0, v̄t] with probability 1
T

for each t = 1, . . . , T .
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C Standard Errors

The variance covariance matrix is calculated using the Hessian of the posterior eval-

uated at the point estimates, which is denoted by H(θ̂, σ̂, β̂). We compute this matrix using

a result from Dempster, Laird and Rubin (1977, p.10) (see also Jamshidian and Jennrich

(2000)) for the EM context and applied in the MAP-EM case

H(θ̂, σ̂, β̂) = (Q̈(θ̂, σ̂, β̂; θ̂, σ̂, β̂) + p̈(θ̂, σ̂, β̂))
(
I3 − Ṁ(θ̂, σ̂, β̂)

)
.

Here, Q̈(θ̂, σ̂, β̂; θ̂, σ̂, β̂) + p̈(θ̂, σ̂, β̂) is a 3 × 3 matrix of second derivatives of Q + p

with respect to the components of its first three arguments. Also,

M(θm, σm, βm) := arg max
θ,σ,β
{Q(θ, σ, β; θm, σm, βm) + p(θ, σ, β)},

and Ṁ(θm, σm, βm) is the Jacobian with respect to θm, σm, and βm. The first coordinate

of M(θm, σm, βm) is given by (9) and the second by (10) in the main text. Since the third

coordinate is not available in closed form and is obtained by solving (2) numerically, its

derivatives with respect to x ∈ {θm, σm, βm} are computed using the Implicit Function

theorem as follows:

−
∂2Q(θ,σ,β;θm,σm,βm)+p(θ,σ,β)

∂x∂β

∂2Q(θ,σ,β;θm,σm,βm)+p(θ,σ,β)
∂β∂β

.

Thus, all the necessary partial derivatives needed to calculate the Jacobian of M(θm, σm, βm)

(and the Hessian H(θ̂, σ̂, β̂)) are obtained analytically (see online Appendix G for detailed

derivations).
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D Estimation of Restricted Model

Without parameters θ, σ and since we have assumed a flat improper prior for β, a

MAP-EM estimator of the no-threshold model is equivalent to an EM-estimator which in

turn is equivalent to a classic ML estimator. The log-likelihood of the restricted model is

(3) L(β | X) =
T∑
t=1

log (p(st | vt, β, 0)) .

The first order condition for the maximization of the log-likelihood is

T∑
t=1

N∑
i=1

st,i

(
log(vt,i)−

∑N
j=1 v

β
t,j log(vt,j)∑N
j=1 v

β
t,j

)
= 0.

We thus obtain the proportionality parameter using Newton’s algorithm exploitng

the fact that

∂2L(β | X)

∂β∂β
= −

T∑
t=1

N∑
i=1

st,i

∑N
j=1 v

β
t,j log(vt,j)

2∑N
j=1 v

β
t,j

−

(∑N
j=1 v

β
t,j log(vt,j)∑N
j=1 v

β
t,j

)2
 .
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E Expected Threshold and its Variance

An analytical expression for the mean of the realized (instead of latent) threshold is:

θ̄(θ, σ) := E[θt|θ, σ] = P (θ∗t ≥ 0 | θ, σ)E[θ∗t |θ∗t ≥ 0, θ, σ]

=
(
1− Φ

(
− θ
σ

))
θ + σφ

(
− θ
σ

)
.

To derive an expression for its standard deviation, we first compute the expectation of the

squared threshold

E[θ2
t |θ, σ] = P (θ∗t ≥ 0 | θ, σ)E[θ∗

2

t |θ∗t ≥ 0, θ, σ]

=
(
1− Φ

(
− θ
σ

))
(σ2 + θ2) + θσφ(− θ

σ
),

to obtain

σ̄(θ, σ) =

√(
1− Φ

(
− θ
σ

))
(σ2 + θ2) + θσφ(− θ

σ
)−

((
1− Φ

(
− θ
σ

))
θ + σφ

(
− θ
σ

))2

=

√(
1− Φ

(
− θ
σ

))
(σ2 + θ2) + θσφ(− θ

σ
)
(
2Φ(− θ

σ
)− 1

)
−
(
1− Φ

(
− θ
σ

))2
θ2 − σ2φ(− θ

σ
)2.

Both θ̄(θ, σ) and σ̄(θ, σ) are continuously differentiable functions of (θ, σ, β). Taking

their distribution to be (asymptotically) normal with variance −E[H(θ, σ, β)]−1, the Delta

method yieds estimates of the asymptotic variances:

̂̄θ(θ, σ)
a∼ N

(
θ̄(θ, σ), Jθ̄(θ,σ)Vθ,σJ

′
θ̄(θ,σ)

)
,(4)

where Jθ̄(θ,σ) =
(
∂θ̄(θ,σ)
∂θ

, ∂θ̄(θ,σ)
∂σ

)
and Vθ,σ denotes the matrix formed by the first two columns

and rows of −E[H(θ, σ, β)]−1.
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Similarly,

¯̂σ(θ, σ)
a∼ N

(
σ̄(θ, σ), Jσ̄(θ,σ)Vθ,σJ

′
σ̄(θ,σ)

)
,(5)

where Jσ̄(θ,σ) =
(
∂σ̄(θ,σ)
∂θ

, ∂σ̄(θ,σ)
∂σ

)
.

The partial derivatives involved in the above Jacobians are:

∂θ̄(θ, σ)

∂θ
= 1− Φ(−θ/σ),

∂θ̄(θ, σ)

∂σ
= φ(−θ/σ),

∂σ̄(θ, σ)

∂θ
=

1

2σ̄(θ, σ)
2Φ(−θ/σ) (θ(1− Φ(−θ/σ)) + σφ(−θ/σ)) + 2θφ(−θ/σ)2(θ − 1), and

∂σ̄(θ, σ)

∂σ
=

1

2σ̄(θ, σ)
− 2θφ(−θ/σ) + 2σ (1− Φ(−θ/σ)) + 2θΦ(−θ/σ)φ(−θ/σ)− 2σφ(−θ/σ)2.
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F First and Second Moments of Truncated Normal

To write closed form expressions for (1), let

Φzt(θm, σm) :=

∫ ut,zt

`t,zt

f(θt | θm, σm)dθt.

With this notation we now write

E[θt | zt, θm, σm] = Φzt(θm, σm)θm +

(
φ

(
`t,zt − θm

σm

)
− φ

(
ut,zt − θm

σm

))
σm,

and

E[θ2
t | zt, θm, σm] = σ2

m

(
`t,zt − θm

σm
φ

(
`t,zt − θm

σm

)
− ut,zt − θm

σm
φ

(
ut,zt − θm

σm

)
+ Φzt(θm, σm)

)
+2E[θt | zt, θm, σm]θm − Φzt(θm, σm)θ2

m,

where φ(.) is the standard normal probability density function.
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G Derivative Calculations for Standard Errors

All the necessary partial derivatives needed to calculate the Jacobian ofM(θm, σm, βm)

(and the Hessian H(θ̂, σ̂, β̂)) are obtained analytically and are given by the following expres-

sions:

Q̈(θ̂, σ̂, β̂; θ̂, σ̂, β̂) + p̈(θ̂, σ̂, β̂) =


−T+κ

σ̂2 0 0

0 −2(T+ν+3)
σ̂2 0

0 0 ∂2Q(θ̂,σ̂,β̂;θ̂,σ̂,β̂)
∂β∂β

 .

In the above expression, use is made of the fact that θ̂, σ̂, β̂ are the maximizing values, which

implies that the first order necessary conditions are satisfied.

As for the derivatives of the Jacobian of M(θm, σm, βm), we have:

∂θm+1

∂θm
=

1

T + κ

T∑
t=1

nt∑
zt=1

p(st | vt, βm, ut,zt )

h(Xt | θm, σm, βm)

[
Ezt [θ∗t | θm, σm]

σ2
m

(
nt∑

z′t=1

p(st | vt, βm, ut,z′t )

h(Xt | θm, σm, βm)

(
Ez′t

[1 | θm, σm]θm

−Ez′t
[θ∗t | θm, σm]

))
+
∂Ezt [θ∗t | θm, σm]

∂θm

]
.

∂θm+1

∂σm
=

1

T + κ

T∑
t=1

nt∑
zt=1

p(st | vt, βm, ut,zt )

h(Xt | θm, σm, βm)

[
Ezt [θ∗t | θm, σm]

σm

(
nt∑

z′t=1

p(st | vt, βm, ut,z′t )

h(Xt | θm, σm, βm)

(
Ez′t

[1 | θm, σm]

−
Ez′t

[θ∗2t | θm, σm]− 2Ez′t
[θ∗t | θm, σm]θm + Ez′t

[1 | θm, σm]θ2
m

σ2
m

))
+
∂Ezt [θ∗t | θm, σm]

∂σm

]
.

∂θm+1

∂βm
=

1

T + κ

T∑
t=1

nt∑
zt=1

p(st | vt, βm, ut,zt )

h(Xt | θm, σm, βm)

[
Ezt [θ∗t | θm, σm]

(
∂ log(p(st | vt, βm, ut,zt ))

∂βm

−
nt∑

z′t=1

p(st | vt, βm, ut,z′t )

h(Xt | θm, σm, βm)

∂ log(p(st | vt, βm, ut,z′t ))

∂βm
Ez′t

[1 | θm, σm]

)]
.
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∂σm+1

∂θm
=

1

2σm+1(T + ν + 3)

[
T∑

t=1

nt∑
zt=1

p(st | vt, βm, ut,zt )

h(Xt | θm, σm, βm)

[
∂Ezt [θ∗t

2 | θm, σm]

∂(θm)
−

Ezt [θ∗t
2 | θm, σm]

σ2
m(

nt∑
z′t=1

p(st | vt, βm, ut,z′t )

h(Xt | θm, σm, βm)

(
Ez′t

[θ∗t | θm, σm]− Ez′t
(1 | θm, σm)θm

))]
− 2(T + κ)θm+1

∂θm+1

∂θm

]
,

∂σm+1

∂σm
=

1

2σm+1(T + ν + 3)

[
T∑

t=1

nt∑
zt=1

p(st | vt, βm, ut,zt )

h(Xt | θm, σm, βm)

[
∂Ezt [θ∗t

2 | θm, σm]

∂σm
−

Ezt [θ∗t
2 | θm, σm]

σm

nt∑
z′t=1

p(st | vt, βm, ut,z′t )

h(Xt | θm, σm, βm)(
Ez′t

[θ2
t | θm, σm]− 2Ez′t

[θ∗t | θm, σm](θm) + Ez′t
(1 | θm, σm)(θm)2

σ2
m

− Ez′t
(1 | θm, σm)

)]

−2(T + κ)θm+1
∂θm+1

∂σm

]
,

∂σm+1

∂βm
=

1

2σm+1(T + ν + 3)

[
T∑

t=1

nt∑
zt=1

p(st | vt, βm, ut,zt )

h(Xt | θm, σm, βm)

[
Ezt [θ∗t

2 | θm, σm]

(
∂ log(g(st | pm, vtk))

∂βm
−

nt∑
z′t=1

p(st | vt, βm, ut,z′t )

h(Xt | θm, σm, βm)
,

∂ log(p(st | vt, βm, ut,z′t ))

∂βm
Ez′t

(1 | θm, σm)

)]
− 2(T + κ)θm+1

∂θm+1

∂βm

]
,

where
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∂Ezt [θ∗t | θm, σm]

∂θm
=

[
φ

(
lt,zt − θm
σm

)
− φ

(
ut,zt − θm

σm

)]
θm
σm

+ Ezt [1 | θm, σm]−[
φ′
(
lt,zt − θm
σm

)
− φ′

(
ut,zt − θm

σm

)]
,

∂Ezt [θ∗t | θm, σm]

∂σm
=

[
lt,zt − θm
σ2
m

φ

(
lt,zt − θm
σm

)
− ut,zt − θm

σ2
m

φ

(
ut,zt − θm

σm

)]
θm +[(

lt,zt − θm
σm

)2

φ

(
lt,zt − θm
σm

)
−
(
ut,zt − θm

σm

)2

φ

(
ut,zt − θm

σm

)]
+[

φ

(
lt,zt − θm
σm

)
− φ

(
ut,zt − θm

σm

)]
,

∂Ezt [θ∗t
2 | θm, σm]

∂θm
= 3

[
Ezt [θ∗t | θm, σm]

(
1− θ2

m

σ2
m

)
− Ezt [1 | θm, σm]θm

]
+
θm
σ2
m(

2Ezt [θ∗t
2 | θm, σm] + Ezt [1 | θm, σm]θ2

m

)
− σm

[
φ

(
lt,zt − θm
σm

)
(

1−
(
lt,zt − θm
σm

)2
)
− φ

(
ut,zt − θm

σm

)(
1−

(
ut,zt − θm

σm

)2
)]

,

∂Ezt [θ∗t
2 | θm, σm]

∂σm
=

[
lt,zt − θm
σm

φ

(
lt,zt − θm
σm

)
− ut,zt − θm

σm
φ

(
ut,zt − θm

σm

)](
2σm +

θ2
m

σm

)
+

2Ezt [1 | θm, σm]

(
σm −

θ2
m

σm

)
+ 2θm

[(
lt,zt − θm
σm

)2

φ

(
lt,zt − θm
σm

)

−
(
ut,zt − θm

σm

)2

φ

(
ut,zt − θm

σm

)]
+ 2Ezt [θ∗t | θm, σm]

θm
σm

+σm

[(
lt,zt − θm
σm

)3

φ

(
lt,zt − θm
σm

)
−
(
ut,zt − θm

σm

)3

φ

(
ut,zt − θm

σm

)]
,
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∂2Q(γ; γm)

∂θm∂β
=

T∑
t=1

nt∑
zt=1

p(st | vt, βm, ut,zt)
h(Xt | θm, σm, βm)

[
Ezt [θ∗t | θm, σm]− Ezt [1 | θm, σm]θm

σ2
m

− Ezt [1 | θm, σm]

nt∑
zt=1

p(st | vt, βm, ut,zt)
h(Xt | θm, σm, βm)

Ezt [θ∗t | θm, σm]− Ezt [1 | θm, σm]θm
σ2
m

]

×

[
N∑
i=zt

sti

(
log(vt,i)−

∑N
j=zt

vβt,j log(vt,j)∑N
j=zt

vβt,j

)]
∂2Q(γ; γm)

∂σm∂β
=

T∑
t=1

nt∑
zt=1

p(st | vt, βm, ut,zt)
h(Xt | θm, σm, βm)

[(
Ezt [θ∗t

2 | θm, σm]− 2Ezt [θ∗t | θm, σm]θm + Ezt [1 | θm, σm]θ2
m

σ2
m

−

Ezt [1 | θm, σm]

)
1

σm
− Ezt [1 | θm, σm]

nt∑
zt=1

p(st | vt, βm, ut,zt)
h(Xt | θm, σm, βm)

1

σm(
Ezt [θ∗t

2 | θm, σm]− 2Ezt [θ∗t | θm, σm]θm + Ezt [1 | θm, σm]θ2
m

σ2
m

− Ezt [1 | θm, σm]

)]

×

[
N∑
i=zt

sti

(
log(vt,i)−

∑N
j=zt

vβt,j log(vt,j)∑N
j=zt

vβt,j

)]
,

∂2Q(γ; γm)

∂βm∂β
=

T∑
t=1

nt∑
zt=1

p(st | vt, βm, ut,zt)
h(Xt | θm, σm, βm)

[
∂ log(p(st | vt, βm, ut,zt))

∂βm
−

nt∑
zt=1

p(st | vt, βm, ut,zt)
h(Xt | θm, σm, βm)

∂ log(p(st | vt, βm, ut,zt))
∂βm

Ezt [1 | θm, σm]

]
Ezt [1 | θm, σm]×[

N∑
i=zt

sti

(
log(vt,i)−

∑N
j=zt

vβt,j log(vt,j)∑N
j=zt

vβt,j

)]
.
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H Auxiliary Tests

All tests are based on Pearson’s goodness-of-fit test statistic. We use simulation under

the null hypothesis to compute exact p-values instead of relying on asymptotic arguments.

Exact procedures are described below for each test.

H.1 Fit

We assess model fit using the test statistic

(6) P ((st)
T
t=1, θ̂, σ̂, β̂) =

T∑
t=1

N∑
i=1

(st,i − st,i(θ̂, σ̂, β̂))2

st,i(θ̂, σ̂, β̂)
.

The null hypothesis is that the observed seat allocations are drawn from the specified model

multinomial distribution with means as specified by the model parameters, specifically,

st,i(θ̂, σ̂, β̂) is the expected number of seats of party i in election t under the null:

st,i(θ̂, σ̂, β̂) = St

N∑
zt=1

qt,i(vt, β̂, ut,zt)p(zt | vt, θ̂, σ̂),

where p(N | vt, θ̂, σ̂) = 1 − Φ
(
ut,N−1−θ̂

σ̂

)
. We simulate the distribution of the test statistic

(and calculate the p-value) by calculating (6) using simulated seat allocations generated for

the observed vote shares under the null. Specifically, to obtain one of 10, 000 realizations

from the distribution of this statistic:

1. For each t, we draw a latent threshold θ̃∗t from the normal distribution with mean θ̂

and variance σ̂2, which determines a non-negative threshold, θ̃t (θ̃t = θ̃∗t if θ̃∗t ≥ 0 and

θ̃t = 0 otherwise).

2. For each t, we draw a vector s̃t allocating St total seats from the Multinomial distri-

bution with probabilities qt,i(vt, β̂, θ̃t) as defined in (2).
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3. We compute the statistic in (6) using the simulated seats (s̃t)
T
t=1 instead of the actual

seats (st)
T
t=1, P ((s̃t)

T
t=1, θ̂, σ̂, β̂).

We repeat this process 10,000 times and compute the p-value as the fraction of the Pearson’s

statistics calculated with these simulated seats that is greater than or equal to P .

Similarly, the fit test of the restricted model is based on the statistic

(7) P o((st)
T
t=1, β̂

o) =
T∑
t=1

N∑
i=1

(si,t − soi,t(β̂o))2

soi,t(β̂
o)

.

Party i’s expected seats according to the restricted model are given by

soi,t(β̂
o) = Stqi,t(vt, β̂

o, 0),

where β̂o denotes the estimated disproportionality parameter from the model with no thresh-

old. The only difference in the computation of the p-value is that we now skip step one and

set the threshold to zero instead. Step 2 is now executed with multinomial probabilities

qi,t(vt, β̂
o, 0) and the remaining steps are analogous.

H.2 MAP-EM vs Restricted Zero-Threshold Model

The restricted model has a threshold of zero (both in expectation and realized thresh-

old) and proportionality parameter β̂o. We can perform a simple comparison test between

the estimated restricted model and the MAP-EM fully estimated model. The null hypoth-

esis is that the the seats are drawn (conditional on the observed votes) from the restricted

model with zero threshold and proportionality β̂o, whereas the alternative is that they are

drawn from the full model with parameters θ̂, σ̂, β̂. We execute this test using the following
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statistic:

(8) D((st)
T
t=1, θ̂, σ̂, β̂, β̂

o) = P o((st)
T
t=1, β̂

o)− P ((st)
T
t=1, θ̂, σ̂, β̂),

where P o and P are computed as in (7) and (6), respectively. Large values of the statistic

provide evidence against the estimated restricted model and in favor of the alternative MAP-

EM estimated model with thresholds. We compute the p-value by drawing seat allocations

under the null (from the Multinomial distribution with probabilities qt,i(vt, β̂
o, 0), as in the

case of the fit statistic P o), evaluating (8) using the simulated seats instead of the actual

seats, and computing the fraction of simulated statistics that exceed D to obtain the p-value.

H.3 Electoral System Change

Consider a set of elections t = 1, . . . , T . Under the null hypothesis one electoral

system governs all T elections with the conditional distribution of seats determined by the

estimated parameters denoted by (θ̂c, σ̂c, β̂c). The alternative hypothesis is that these T

elections are partitioned into two or more (fixed) subsets Tf ⊂ {1, . . . , T}, a different con-

ditional distribution of seats governs seat allocation in each subset, f , and this distribution

is determined by the estimated parameters (θ̂f , σ̂f , β̂f ) obtained by the MAP-EM estimates

when the subset of elections Tf is used for their estimation. The comparison test computes

the following statistic for elections that are part of the coarser system

(9) Dsystems((st)
T
t=1, θ̂

c, σ̂c, β̂c, (θ̂f , σ̂f , β̂f )f ) =
∑
t

P c
t −

∑
f

∑
t∈Tf

P f
t ,

where

P k
t =

N∑
i=1

(st,i − st,i(θ̂k, σ̂k, β̂k))2

st,i(θ̂k, σ̂k, β̂k)
, k ∈ {c, f}.

18



We simulate the distribution of this statistic under the null. We obtain one realization from

that distribution as follows:

1. For each t, we draw a latent threshold θ̃∗t from the normal distribution with mean θ̂c

and variance (σ̂c)2, which determines a non-negative threshold, θ̃t (θ̃t = θ̃∗t if θ̃∗t ≥ 0 or

θ̃t = 0 otherwise).

2. For each t, we draw a vector s̃t allocating St total seats from the Multinomial distri-

bution with probabilities qt,i(vt, β̂
c, θ̃t) as defined in (2).

3. We compute the statistic in (9) using the simulated seats (s̃t)
T
t=1 instead of the actual

seats (st)
T
t=1.

We repeat this process 10,000 times and compute the p-value as the fraction of these 10,000

Pearson’s statistics that is greater than or equal to Dsystems.

H.4 Bayesian Tests

We can perform similar tests using information from the full posterior. The tests of

fit can be performed using the same test statistics but using the posterior predictive dis-

tribution as detailed in Gelman et al. (2004). Specifically, using (6), prior to the first step

described in subsection H.1, we would obtain a sample of size one of the model parameters

from the posterior distribution, say θ′, σ′, β′. We would then execute Steps 1-3 to obtain

a statistic, drawing threshold realizations θ̃t, simulated seats s̃t, and computing the statis-

tic P ((s̃t)
T
t=1, θ

′, σ′, β′). This approach would yield a p-value as the fraction of times this

statistic exceeds the statistic computed with the actual seats P ((st)
T
t=1, θ

′, σ′, β′). We can

perform the model comparison tests for electoral system change either using a version of

the Bayesian Information Criterion (BIC) as suggested in Fraley and Raftery (2007), or the

Deviance Information Criterion Spiegelhalter et al. (2002) which has the advantage that it
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more naturally compensates for model complexity. The latter test is easy to compute once

a sample of parameters from the posterior distribution is available.
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I Full Results

Table 1: MAP-EM Estimates and Comparison with Restricted Model

Full Restricted Tests (p-values)

Country System T Dates θ̄(θ̂, σ̂) σ̄(θ̂, σ̂) β̂ β̂o Fit Fito Difference

Austria AUT1 8 1945-1970 3.938 0.585 1.283? 1.371? 1 0.805 0.018+

(0.471) (0.154) (0.064) (0.061)

AUT2 6 1971-1990 3.247 0.628 0.981 1.156? 0.995 0.506 0+

(1.064) (0.18) (0.057) (0.05)

AUT3 6 1994-2008 3.841 0.603 1.02 1.231? 1 0.589 0+

(0.497) (0.169) (0.059) (0.05)

Belgium BEL1 16 1946-1991 0.518 0.443 1.202? 1.22? 0.995 0.95 0.203

(0.22) (0.098) (0.028) (0.027)

BEL2 2 1995-1999 0.696 0.539 1.3? 1.326? 1 0.998 0.244

(0.835) (0.186) (0.139) (0.132)

BEL3 3 2003-2010 0.53 0.501 1.322? 1.326? 0.991 0.938 0.287

(1.225) (0.326) (0.103) (0.101)

Bulgaria BGR1 5 1991-2005 4.332 0.564 1.015 1.377? 1 0.353 0+

(0.386) (0.146) (0.044) (0.034)

BGR2b 1 2009 3.652 0.605 0.994 1.185? 0.985 0.051 0+

(0.656) (0.175) (0.1) (0.09)

Cyprus CYP1 1 1981 4.039 0.65 0.68 1.254 0.419 0.232 0.016+

(1.836) (0.207) (0.366) (0.281)

CYP2 2 1985-1991 3.6 0.646 0.969 1.173 1 0.952 0.073

(1.944) (0.205) (0.265) (0.223)

CYP3 3 1996-2006 1.586 0.584 1.067 1.158 1 1 0.123

(0.5) (0.166) (0.118) (0.105)

Czech CZE1 2 1996-1998 4.966 0.652 1.041 1.406? 1 0.15 0+

Republic (1.178) (0.195) (0.088) (0.071)

CZE2 3 2002-2010 5.231 0.647 1.223? 1.685? 0.999 0.329 0+

(0.929) (0.192) (0.105) (0.083)

Germany DEU1 1 1949 0.012 0.073 1.139? 1.139? 0.986 0.865 0.374

(0.116) (1.107) (0.058) (0.058)

DEU2 1 1953 0.287 0.385 1.22? 1.225? 0.796 0.007 0.1

(0.584) (0.319) (0.054) (0.053)

DEU3 8 1957-1983 3.866 0.744 1.04 1.182? 0.22 0.138 0+

(0.537) (0.219) (0.027) (0.024)
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DEU4 1 1987 2.019 0.634 0.998 1.103? 1 0.795 0.001+

(2.258) (0.2) (0.073) (0.062)

DEU5 1 1990 2.255 0.586 1.109? 1.274? 0.48 0.065 0+

(0.59) (0.169) (0.055) (0.049)

DEU6 2 1994-1998 3.118 0.627 1.018 1.181? 1 0.284 0+

(1.075) (0.184) (0.036) (0.03)

DEU7 2 2002-2005 2.696 0.627 1.092? 1.226? 0.265 0.26 0+

(1.174) (0.187) (0.044) (0.037)

DEU8 1 2009 2.812 0.639 1.046 1.21? 0.931 0.1 0+

(2.03) (0.203) (0.091) (0.078)

Denmark DNK1 2 1945-1947 1.303 0.586 1.047 1.083 0.992 0.978 0.178

(0.617) (0.157) (0.084) (0.081)

DNK2 2 1950 2.134 0.635 0.999 1.052 1 0.999 0.079

4/1953 (2.206) (0.2) (0.088) (0.081)

DNK3 3 9/1953 0.003 0.036 1.085 1.085 0.771 0.664 0.718

1957-1960 (0.034) (0.495) (0.055) (0.055)

DNK4 3 1964-1968 1.835 0.536 0.998 1.169? 1 0.765 0.003+

(0.357) (0.135) (0.068) (0.059)

DNK5 14 1971-2005 1.874 0.544 1.006 1.102? 0.958 0.958 0.052

(0.172) (0.104) (0.027) (0.025)

DNK6 1 2007 1.426 0.598 0.997 1.051 1 0.993 0.115

(0.794) (0.167) (0.122) (0.115)

Spain ESP1 10 1977-2008 0.187 0.269 1.255? 1.273? 0.973 0.628 0.054

(0.105) (0.074) (0.02) (0.018)

Estonia EST1 1 1992 1.664 0.608 1.524? 1.585? 0.992 0.775 0.091

(0.918) (0.178) (0.183) (0.17)

EST2 2 1995-1999 4.231 0.621 1.153 1.453? 1 0.822 0.001+

(0.761) (0.179) (0.129) (0.107)

EST3 2 2003-2007 3.503 0.644 1.186 1.381? 1 0.984 0.037+

(1.897) (0.205) (0.156) (0.132)

Finland FIN1 18 1945-2007 0.359 0.451 1.195? 1.207? 0.991 0.946 0.476

(0.284) (0.162) (0.031) (0.029)

France FRA1 3 1945-1946 0.031 0.123 1.347? 1.347? 1 0.773 0.788

(0.307) (1.801) (0.075) (0.075)

FRA2 2 1951-1956 0.15 0.286 0.779 0.779 0.028 0.001 0.052

(1.513) (2.076) (0.078) (0.078)

FRA3 2 1958-1962 1.713 0.606 1.29? 1.359? 0.014 0 0.063

(0.581) (0.181) (0.068) (0.064)

FRA4 3 1967-1973 1.03 0.563 1.258? 1.268? 0 0 0.324
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(0.576) (0.136) (0.045) (0.044)

FRA5 2 1978-1981 1.492 0.558 1.307? 1.426? 0.148 0 0.554

(0.408) (0.146) (0.073) (0.066)

FRA6 1 1986 0.77 0.54 1.199? 1.222? 0.033 0 0.947

(0.632) (0.152) (0.07) (0.067)

FRA7 5 1988-2007 0.008 0.059 1.694? 1.694? 0.881 0 1

(0.086) (0.947) (0.038) (0.038)

United GBR1 18 1945-2010 0 0.01 1.486? 1.486? 1 0 0.976

Kingdom (0.003) (0.084) (0.021) (0.021)

Greece GRC1 1 1974 2.013 0.635 1.722? 1.732? 1 0.04 0.217

(2.669) (0.201) (0.107) (0.105)

GRC2 2 1977-1981 0.285 0.39 1.742? 1.745? 1 0.195 0.806

(1.219) (0.701) (0.089) (0.088)

GRC3 1 1985 0.586 0.519 1.673? 1.683? 1 0.973 0.439

(1.542) (0.377) (0.171) (0.167)

GRC4 3 1989-1990 0.006 0.05 1.248? 1.249? 1 0.744 0.496

(0.055) (0.677) (0.055) (0.055)

GRC5 4 1993-2004 3.171 0.556 1.254? 1.411? 0.952 0.362 0.003+

(0.331) (0.143) (0.053) (0.049)

GRC6 2 2007-2009 3.102 0.61 1.105? 1.209? 0.697 0.309 0.002+

(0.691) (0.177) (0.059) (0.054)

Croatia HRV1a 1 1992 0.005 0.048 2.201? 2.201? 0.167 0 0.998

(0.059) (0.741) (0.225) (0.225)

HRV2b 1 1992 2.893 0.595 1.048 1.228? 0.998 0.902 0.021+

(0.629) (0.173) (0.145) (0.127)

HRV3a 1 1995 0.252 0.369 7.829∗? 7.829? 1 1 0.609

(3.163) (2.164) (3.109) (3.109)

HRV4b 1 1995 4.032 0.628 1.05 1.294? 1 0.524 0.002+

(0.891) (0.184) (0.156) (0.133)

HRV5 3 2000-2007 1.168 0.652 1.305? 1.386? 0.966 0.703 0.131

(0.48) (0.181) (0.074) (0.066)

Hungary HUN1 1 1990 0.003 0.035 2.332? 2.332? 0.867 0.001 0.998

(0.035) (0.512) (0.184) (0.184)

HUN2 5 1994-2010 0.002 0.026 2.149? 2.149? 0.968 0.002 0.995

(0.019) (0.328) (0.081) (0.081)

Ireland IRL1 6 1948-1965 0.209 0.331 1.124? 1.128? 0.99 0.929 0.382

(0.411) (0.338) (0.05) (0.049)

IRL2 3 1969-1977 2.175 0.596 1.177 1.288? 0.975 0.808 0.083

(0.637) (0.169) (0.123) (0.107)
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IRL3 9 1981-2007 0.13 0.263 1.196? 1.2? 1 0.922 0.499

(0.294) (0.467) (0.038) (0.036)

Iceland ISL1 5 1946-1956, 5.614 0.669 0.94 1.084 0.282 0.144 0.017+

6/1959 (1.533) (0.207) (0.151) (0.136)

ISL2 8 10/1959, 1.036 0.591 1.138 1.18? 0.979 0.986 0.28

1963-1983 (0.77) (0.187) (0.093) (0.084)

ISL3 4 1987-1999 1.193 0.619 1.13 1.203? 1 1 0.224

(0.695) (0.187) (0.116) (0.1)

ISL4 3 2003-2009 4.442 0.655 1.114 1.258? 1 0.993 0.08

(1.82) (0.208) (0.157) (0.141)

Italy ITA1 1 1946 0.007 0.053 1.04 1.04 0.982 0.978 0.366

(0.071) (0.841) (0.049) (0.049)

ITA2 1 1948 0.005 0.046 1.142? 1.142? 0.999 0.908 0.429

(0.056) (0.712) (0.046) (0.046)

ITA3 1 1953 0.021 0.101 1.14? 1.14? 0.998 0.944 0.648

(0.189) (1.374) (0.05) (0.05)

ITA4 9 1958-1992 0.001 0.014 1.125? 1.125? 1 0.967 0.517

(0.006) (0.138) (0.015) (0.015)

ITA5 2 1996-2001 0.002 0.024 1.221? 1.221? 0.94 0.167 0.488

(0.017) (0.298) (0.041) (0.041)

ITA6a 2 2006-2008 0.002 0.025 1.17? 1.17? 0.934 0.148 0.167

(0.018) (0.32) (0.028) (0.028)

Lithuania LTU1b 1 1992 1.702 0.597 1.237 1.347? 0.827 0.591 0.041+

(0.74) (0.172) (0.154) (0.134)

LTU2b 4 1996-2008 5.13 0.597 1.008 1.656? 1 0.433 0+

(0.512) (0.161) (0.124) (0.09)

Luxembourg LUX1 3 1945 0.258 0.373 1.186 1.187 1 1 0.453

1954-1959 (2.095) (1.385) (0.146) (0.145)

LUX2 2 1948-1951 0.252 0.369 0.617 0.617 0.178 0.134 0.907

(3.162) (2.163) (0.235) (0.235)

LUX3 4 1964-1979 1 0.59 1.23? 1.243? 1 1 0.404

(1.216) (0.177) (0.131) (0.128)

LUX4 6 1984-2009 2.447 0.574 1.162? 1.245? 0.573 0.615 0.47

(0.428) (0.154) (0.098) (0.09)

Latvia LVA1 1 1993 3.584 0.631 0.986 1.279? 1 0.869 0+

(1.059) (0.187) (0.142) (0.11)

LVA2 5 1995-2010 5.056 0.573 1.01 1.538? 1 0.647 0+

(0.416) (0.149) (0.111) (0.084)

North MKD1 1 1994 0.007 0.054 1.373? 1.373? 0.096 0 0.973
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Macedonia (0.073) (0.858) (0.125) (0.125)

MKD2a 1 1998 0.252 0.369 1.416? 1.416? 0.042 0 0.955

(3.163) (2.164) (0.213) (0.213)

MKD3b 1 1998 5.594 0.662 1.158 1.419 0.999 0.924 0.123

(1.225) (0.199) (0.417) (0.38)

MKD4 3 2002-2008 0.81 0.56 1.215? 1.307? 0.998 0.978 0.039+

(0.379) (0.137) (0.072) (0.06)

Malta MLT1 2 1966-1971 0.257 0.372 2.84∗ 2.84 0.999 0.895 0.424

(3.247) (2.166) (1.357) (1.356)

MLT2 2 1976-1981 0.252 0.369 0.439∗ 0.439 0.721 0.711 0.558

(3.163) (2.164) (3.462) (3.462)

MLT3 2 1987-1992 2.898 0.64 1.015∗ 1.854 1 0.901 0.342

(2.633) (0.203) (2.764) (1.02)

MLT4 4 1996-2008 2.274 0.637 1.652∗ 2.099 0.99 0.966 0.404

(3.466) (0.202) (1.807) (0.937)

Moldova MOL1 3 1994-1998 5.076 0.661 1.004 1.496? 1 0.447 0+

2010 (1.631) (0.21) (0.111) (0.083)

MOL2 3 2001-2005 6.814 0.679 1.021 1.489? 1 0.2 0+

4/2009 (1.14) (0.201) (0.09) (0.07)

MOL3 1 7/2009 3.211 0.642 1.04 1.207 1 0.774 0.015+

(1.957) (0.204) (0.157) (0.133)

Montenegro MON1 2 2006-2009 3.295 0.615 1.007 1.295? 1 0.764 0+

(0.64) (0.185) (0.109) (0.086)

Netherlands NLD1 3 1946-1952 0.557 0.506 1.06 1.067 1 1 0.355

(0.869) (0.226) (0.086) (0.085)

NLD2 17 1956-2010 0.535 0.402 1.049? 1.07? 1 1 0.126

(0.162) (0.066) (0.025) (0.024)

Norway NOR1 2 1945-1949 0.526 0.495 1.272? 1.278? 0.956 0.499 0.459

(0.922) (0.252) (0.076) (0.075)

NOR2 9 1953-1985 0.412 0.49 1.155? 1.17? 0.946 0.661 0.474

(0.345) (0.22) (0.034) (0.031)

NOR3 4 1989-2001 0.241 0.367 1.238? 1.253? 0.959 0.749 0.513

(0.397) (0.313) (0.061) (0.055)

NOR4 2 2005-2009 2.401 0.63 1.076 1.168? 0.975 0.905 0.007+

(1.428) (0.191) (0.083) (0.074)

Poland POL1 1 1991 0.002 0.028 1.269? 1.269? 0.989 0.217 0.701

(0.023) (0.378) (0.054) (0.054)

POL2 2 1993-1997 5.124 0.578 1.638? 2.056? 1 0.03 0+

(0.432) (0.155) (0.072) (0.064)
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POL3 1 2001 6.556 0.673 1.052 1.265? 0.995 0.023 0+

(1.1) (0.2) (0.065) (0.057)

POL4 2 2005-2007 5.074 0.661 1.238? 1.499? 1 0.139 0+

(1.568) (0.205) (0.068) (0.057)

Portugal PRT1 2 1975-1976 0.413 0.482 1.327? 1.379? 0.071 0.01 0.989

(0.398) (0.194) (0.079) (0.071)

PRT2 5 1979-1987 1.538 0.565 1.198? 1.334? 0.719 0.537 0.02+

(0.366) (0.148) (0.052) (0.044)

PRT3 6 1991-2009 1.565 0.55 1.276? 1.349? 1 0.978 0.027+

(0.409) (0.14) (0.046) (0.042)

Romania ROM1 1 1990 0.364 0.412 0.98 1.047 1 1 0+

(0.382) (0.172) (0.033) (0.03)

ROM2 2 1992-1996 3.069 0.576 1.017 1.453? 0.877 0.4 0+

(0.497) (0.159) (0.06) (0.045)

ROM3 2 2000-2004 5.491 0.635 0.996 1.441? 0.999 0.49 0+

(0.664) (0.184) (0.064) (0.047)

ROM4 1 2008 4.36 0.651 0.99 1.441? 0.997 0.451 0+

(1.574) (0.202) (0.124) (0.095)

Slovenia SVN1 2 1992-1996 2.965 0.555 0.862 1.352? 0.999 0.666 0+

(0.415) (0.149) (0.128) (0.096)

SVN2 3 2000-2008 3.654 0.585 1.015 1.243? 1 0.928 0+

(0.465) (0.161) (0.088) (0.073)

Servia SER1 2 2007-2008 4.176 0.627 1.013 1.322? 1 0.311 0+

(0.838) (0.18) (0.074) (0.061)

Slovakia SVK1 1 1994 4.312 0.635 1.013 1.324? 1 0.22 0+

(0.966) (0.187) (0.118) (0.093)

SVK2 4 1998-2010 4.829 0.599 1.007 1.424? 1 0.268 0+

(0.539) (0.164) (0.081) (0.064)

Sweden SWE1 1 1948 0.252 0.369 1.16 1.16 0.795 0.567 0.51

(3.163) (2.164) (0.105) (0.105)

SWE2 6 1952-1968 0.006 0.049 1.105? 1.105? 0.91 0.703 0.955

(0.061) (0.756) (0.038) (0.038)

SWE3 13 1970-2010 3.644 0.552 1.004 1.088? 1 0.397 0+

(0.36) (0.135) (0.021) (0.02)

Switzerland SWZ1 16 1947-2007 0.004 0.04 1.109? 1.109? 1 1 0.442

(0.035) (0.497) (0.023) (0.023)

Ukraine UKR1 1 1994 0.117 0.249 1.23? 1.239? 0.911 0.461 0.374

(0.355) (0.637) (0.075) (0.071)

UKR2b 2 1998-2002 4.257 0.593 0.993 1.518? 0.981 0.097 0+
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(0.537) (0.168) (0.076) (0.056)

UKR3a 2 1998-2002 0.002 0.028 1.337? 1.337? 0.991 0.176 0.666

(0.022) (0.365) (0.072) (0.072)

UKR4 2 2006-2007 3.422 0.572 1.003 1.356? 0.963 0 0+

(0.454) (0.154) (0.054) (0.046)

Estimates of expected national electoral threshold, θ̄(θ̂, σ̂), threshold standard deviation,

σ̄(θ̂, σ̂), and disproportionality, β̂. Estimates of disproportionality for models with no thresh-

old, β̂o. Standard errors in parentheses.

a SMD partition of mixed system.

b PR partition of mixed system.

∗ Not statistically different than three (3) at the 5% level of significance (two-tailed test).

? Larger than one at the 5% level of significance (one-tailed test).

+ Comparison test favors model with threshold at 5% level of significance.
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J Tests of Change in Electoral Systems
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Table 2: Statistically Significant Electoral System Changes

Panel A: Coarse vs. 5% cutoff definition Panel B : 5% cutoff vs. finest definition

System Years p-values System Years p-values

CYP1-2 1981-1991 0.275 BEL1 1946-1991 0.25
DEU4-5 1987-1990 0.268 DEU3 1957-1983 0.094
DEU6-7 1994-2005 0.306 FRA1 1945-1946 0.283
EST1-2 1992-1999 0.024 FRA4 1967-1973 0.055
FRA3-5,7 1958-1981,1988-2007 0 FRA7 1988-2007 0.058
HRV1,3a 1992,-1995 0.006 GBR1 1945-2010 0
HRV2,4b 1992,-1995 0.171 IRL1 1948-1965 0.245
HUN1-2 1990-2010 0.542 IRL2 1969-1977 0.321
IRL1-3 1948-2007 0.032 IRL3 1981-2007 0.19
ISL1-2 1946-1983 0.025 ITA4 1958-1992 0.373
LTU1-2 1992-2008 0 LUX1 1945,1954-1959 0.237
LUX1-4 1945-2009 0.088 LUX3 1964-1979 0.407
LVA1-2 1993-2010 0.003 LUX4 1984-2009 0.106
MLT1-2 1966-1981 0.003 MLT1 1966-1971 0.29
MOL1-3 1994-2010 0.428 MOL1 1994-2010 0.245
NLD1-2 1946-2010 0.595 NOR1 1945-1949 0.395
NOR3-4 1989-2009 0.106 NOR2 1953-1985 0.055
PRT1-3 1975-2009 0 PRT1 1975-1976 0.018
ROM2-4 1992-2008 0.04 ROM2 1992-1996 0.389
UKR2,4c 1998,2002,2006-2007 0.175 ROM3 2000-2004 0.319

SVK2 1998-2010 0.424
SWE2 1952-1968 0.368
SWE3 1970-2010 0.539
SWZ1 1947-2007 0.063

Reports tests of change in electoral systems comparing two pairs of alternative ad
hoc definitions. Panel A presents results of the comparison between our default 5%
cutoff definition and a coarser definition. Panel B presents results of the comparison
between our default 5% cutoff definition and a finer definition of electoral systems.
In each case, the null hypothesis is that the coarser definition is correct (no change
within the corresponding period) and small p-values indicate support for the finer
definition. ‘System’ reports systems involved in the test according to our default
definition. ‘Years’ reports the years covered by the test.
a SMD partition of mixed system.
b PR partition of mixed system.
c years 1998 and 2002 PR partition.
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K Sensitivity to MAP-EM priors & Comparison with

EM

To probe the sensitivity in estimated parameters and standard errors to the prior

specification, we run the MAP-EM algorithm with four (4) sets of different prior specifica-

tions:

1. The data-independent prior used in the main body of the paper:

• ν = 2,

• s2 = 2,

• µ = 0,

• κ = 1
100

.

This sets the prior mean of the mean of the latent threshold, θ, at zero and applies an

improper inverse-gamma prior IG(1, 1) on σ2 that has a mode at 1
2
.

2. A data-driven prior specified in the spirit of the prior used by Fraley and Raftery

(2007):

• ν = 3,

• s2 = 2var(v̄t),

• µ =
∑T

t=1 v̄t
2T

,

• κ = 1
100

.

This prior uses the information that the realized threshold in election t is in [0, v̄t] to

set var(v̄) = 1
T

∑T
t=1

(
v̄2
t

4
+ ( v̄t

2
)2
)
−
(∑T

t=1
v̄t
2T

)2

, and the mean at the mean of the

midpoints of the logical interval of the realized threshold. The calculated mean of the
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prior on σ2 is s2, and it is equal to the variance of a random variable that is drawn from

the ‘non-informative’ Beta(1
2
, 1

2
) in [0, v̄t] with probability 1

T
for each t = 1, . . . , T .

3. A data-independent prior that leaves the prior on σ2 the same IG(1, 1) but shifts the

prior mean of the latent threshold mean θ from µ = 0 to µ = 5:

• ν = 2,

• s2 = 2,

• µ = 5,

• κ = 1
100

.

4. A data-independent prior that leaves the prior on θ the same as in our default choice,

but assumes a proper inverse gamma IG(1.5, 0.05) for σ2. This prior is much more

tightly concentrated near zero with a mode at 0.02 and a mean at 0.1:

• ν = 3,

• s2 = 0.1,

• µ = 0,

• κ = 1
100

.

For each electoral system, we run MAP-EM for each of these four prior specifications

and then compute standard errors using the procedure of Online Appendices C and E as ap-

plicable. We then compute the maximum absolute difference in these quantities (parameters

and standard errors). This information is then plotted against two measures of the amount

of data we have available for each system:

• The number of elections, with the results displayed in Figures 1 and 2;

• The logarithm of the number of parties receiving positive vote shares across the elec-

tions in the system (log
(∑T

t=1

∑N
i=1 I(vi,t > 0)

)
) in Figures 3 and 4.
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These figures exhibit the behavior we would expect: The estimated parameters and standard

errors are quite sensitive to the prior for electoral systems for which the amount of data

is small (using either measure for the amount of data). In all cases, the proportionality

parameters are the most stable, while the estimated standard deviation of the latent threshold

σ̂ shows the least robustness, with differences in point estimates that are away from zero (but

decreasing) with the amount of data. But despite these deviations, the expected threshold,

θ̄(θ̂, σ̂), is more robust, in part because the differences reflect several cases with negative

estimated θ̂, for which the bulk of the mass of the distribution of the latent threshold

is below zero. Systems that show particular volatility (for example, the Maltese systems

MLT1-4, the Croatian system HRV3) have both a small number of elections and a small

number of parties receiving positive votes as can be gleaned by the combined information in

Figures 1-4. But also note that many of these systems that exhibit large volatility in their

estimated parameters also have large estimated standard errors under our default MAP-EM

specification as reported in Online Appendix I, so that the MAP-EM estimator provides a

natural warning to place less confidence on these estimates.
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Figure 1: MAP-EM Sensitivity to Prior (Parameters & Standard Errors)
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Scatter plots in the left present the difference between the maximum estimate and the
minimum estimate obtained with MAP-EM with the four alternative priors (maximum dif-
ference) as a function of number of elections in each system being estimated. Scatter plots
in the right present the difference between the maximum estimate and the minimum esti-
mate of the standard error of each parameter obtained by applying the procedure in Online
Appendix C on the MAP-EM estimates for each of the four alternative priors (maximum
difference) as a function of number of elections in each system being estimated.
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Figure 2: MAP-EM Sensitivity to Prior (θ̄(θ̂, σ̂) and σ̄(θ̂, σ̂) & their Standard Errors)
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Scatter plots in the left present the difference between the maximum estimate and the
minimum estimate obtained with MAP-EM with the four alternative priors (maximum dif-
ference) as a function of number of elections in each system being estimated. Scatter plots
in the right present the difference between the maximum estimate and the minimum esti-
mate of the standard error of each parameter obtained by applying the procedure in Online
Appendix E on the MAP-EM estimates for each of the four alternative priors (maximum
difference) as a function of number of elections in each system being estimated.
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Figure 3: MAP-EM Sensitivity to Prior (Parameters & Standard Errors)
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Displays the same information as in Figure 1 as a function of the logarithm of the sum of
the number of parties receiving positive vote shares in each election for each system being
estimated.
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Figure 4: MAP-EM Sensitivity to Prior (θ̄(θ̂, σ̂) and σ̄(θ̂, σ̂) & their Standard Errors)
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Displays the same information as in Figure 2 as a function of the logarithm of the sum of
the number of parties receiving positive vote shares in each election for each system being
estimated.
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We now explore the differences between the MAP-EM estimates with the default

prior specification used in the main body of the paper (ν = s2 = 2, κ = 1
100
, µ = 0) and

estimates obtained from application of the EM algorithm without a prior. As we have

already discussed in motivating the MAP-EM approach, the pure EM-algorithm is plagued by

numerical instability and slow convergence and to obtain the EM estimates for this analysis

we had to reduce the convergence criterion, now requiring that successive parameter iterates

are within 10−7 instead of 10−9 of each other. With that relaxed convergence criterion

we obtain convergence for all 116 systems (though not for all 27 initial values we initiate

the algorithm for each system).2 We encountered many instances in which our analytical

standard errors failed to compute despite convergence. Probing of the eigenvalues of the

resulting Hessian from our approximation reveals many cases when the maximum eigenvalue

is nearly zero and even positive (it ought to be negative for a negative definite Hessian). Even

when the eigenvalue is negative, many standard errors appear implausible. We therefore focus

the comparison on the point estimates θ̂, σ̂, β̂, and θ̄(θ̂, σ̂) and σ̄(θ̂, σ̂).

In Figure 5 we plot the MAP-EM estimates of these quantities against the EM point

estimates. For most of the systems considered, the estimates from these two approaches are

very close when it comes to the proportionality parameter β̂, but also for expected latent

and realized thresholds θ̂ and θ̄(θ̂, σ̂). Not surprisingly, the biggest differences appear in the

case of the nuisance parameters σ̂ and σ̄(θ̂, σ̂). This is not surprising, as we have already

seen that these parameters are the most sensitive the prior. Furthermore, it is also evident

that there is a cluster of systems for which the differences in these estimates are noticeable.

These are largely the same set of systems for which we observed noticeable sensitivity to the

prior due to a small number of elections and fewer parties.

Figure 6 presents the same comparison for systems for which the Hessian is negative

2The initial values and all other aspects of the algorithms are the same except for the

prior and the convergence criterion.
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definite at the estimated parameters (76 systems). These are cases in which we can place

bigger confidence that the EM algorithm has converged to the right mode of the likelihood.3

The relationships show that the MAP-EM and the pure EM estimates of expected thresholds

θ̄(θ̂, σ̂) and disproportionately, β̂, which are substantively the focus of our study, follow each

other much more closely in this subset. In the case of θ̄(θ̂, σ̂) this is the case despite the

differences in σ̂. As can be gleaned from the first panel on the left, θ̂ takes smaller values

below zero under MAP-EM to produce the same near zero expected threshold θ̄(θ̂, σ̂) as EM

when the prior forces the value of σ̂ to larger values than at EM.

3Other cases may have too. The sign of the maximum eigenvalue is numerically sensitive

in the analytical Hessian computations when the likelihood is very flat.
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Figure 5: MAP-EM vs. EM Estimates
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Scatter plots present comparison of MAP-EM with EM estimates.
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Figure 6: MAP-EM vs. EM Estimates (EM Hessian Negative Definite)
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Scatter plots present comparison of MAP-EM with EM estimates for the subset of systems
for which the computed Hessian at the EM convergence point is negative definite.
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L Alternative cutoff rules for electoral system deter-

mination

In the following table we summarize the number of electoral systems by country that

result from application of different rules for determining changes in electoral institutions.

The column labeled “Coarse” shows the number of systems that ignore numerical changes in

the number of allocated seats, districts, or legal thresholds as long as the allocation formula

(including upper tier allocation rules) are stable. “Finest” records a change whenever there is

a change in any of the observed quantities, allocation formulas, number of seat, districts, etc.

The intermediate columns require either a change in allocation formulas (including upper

tier rules) or apply a percentage cutoff rule in the numerical dimensions (number of seats,

number of districts, legal thresholds), as described in Appendix M. In 32 out of 36 countries,

the number of identified electoral institutions does not change when we move from a 5% to

a 7.5% cutoff rule. Similarly, the number of electoral institutions does not change in 27 out

of 36 countries when we switch from 5% to a 2.5% cutoff rule. The level of the cutoff makes

no difference in 24 out of 36 countries.

Table 3: Number of electoral systems

Country Coarse 7.5% Rule 5% Rule 2.5% Rule Finest

AUT 3 3 3 3 3

BEL 3 3 3 3 4

BGR 2 2 2 2 2

CYP 2 3 3 3 3

CZE 2 2 2 2 2

DEU 6 7 8 8 9

DNK 6 6 6 6 6

ESP 1 1 1 1 1

EST 2 3 3 3 3

FIN 1 1 1 1 1

FRA 4 7 7 8 10

GBR 1 1 1 2 8

GRC 6 6 6 6 6

HRV 3 5 5 5 5

HUN 1 2 2 2 2

IRL 1 2 3 5 7

ISL 3 4 4 4 4

ITA 6 6 6 7 7

41



LTU 1 2 2 2 2

LUX 1 3 4 6 7

LVA 1 2 2 2 2

MKD 4 4 4 4 4

MLT 3 4 4 5 5

MOL 1 3 3 3 5

MON 1 1 1 1 1

NLD 1 2 2 2 2

NOR 3 4 4 5 7

POL 4 4 4 4 4

PRT 1 2 3 4 4

ROM 2 4 4 4 6

SVN 2 2 2 2 2

SER 1 1 1 1 1

SVK 2 2 2 2 3

SWE 3 3 3 3 9

SWZ 1 1 1 2 4

UKR 3 4 4 4 4

.
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M Electoral Results and Institutions Data Codebook

The data include information on votes and seats of all parties or coalitions of parties

contesting elections, as well as the institutional characteristics that govern the allocation of

seats for a given election. Each country data file contains up to five worksheets: Parties,

Coalitions, Votes, Seats, and Institutions.

M.1 Electoral Data

These data are recorded in worksheets: Parties, Coalitions, Votes, Seats. The work-

sheet Parties includes the following variables:

PARTY or COALITION NUMBER: Number that identifies a party or coalition in

the data set. Includes parties that did not contest elections on their own but in an electoral

coalition including other parties. Coalitions are listed at the bottom of the worksheet.

ENGLISH NAME: Name of the party in English. If not available from original sources,

name corresponds to the literal translation of the native name.

NATIVE NAME: Native name.

The Coalitions worksheets detail the composition of electoral coalitions (if present).

The Votes and Seats worksheets contain votes and seats (respectively) of parties or

coalitions (corresponding to rows) per election (corresponding to columns).

M.2 Primary Institutional Variables

The Institutions worksheet records electoral system information per election (corre-

sponding to columns as in the Seats and Votes worksheets). Each row corresponds to a
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variable, starting with election date information and continuing with institutional variables

(either primary or derivative) which we detail below.

SYSTEM: Electoral systems per country are enumerated starting with 1 for the first

system encountered in the data. A system persists if

• There are no changes in the allocation formula.4

• No other primary institutional variable (number of districts, number of seats, or

numerical thresholds) changes by more than 5% of the system’s average (that is

if I1, . . . , It, and It+1 reflect consecutive values, a change occurs at t + 1 whenever

max{
∑t+1

t′=1
It′

t+1
,It+1}

min{
∑t+1

t′=1
It′

t+1
,It+1}

> 1.05).

COARSE SYSTEM: Alternative (coarser) definition of electoral system enumerated

starting with 1 for first system encountered in the data. A system persists if

• There are no changes in the allocation rules, even if changes occur in other coded

variables (numerical thresholds, number of districts, or number of seats).

FINEST SYSTEM: Alternative (finer) definition of electoral system enumerated starting

with 1 for first system encountered in the data. A system persists if

• There are no changes in the allocation formula.

• There are no changes in numerical thresholds, number of districts, or number of seats.

4There is one exception in the data: A nominal change in allocation formula for the highest

tier in the third Swedish system from Modified Saint Lague to Saint Lague is ignored as the

divisor sequence that is actually in use at this tier is identical between the two versions of

these two allocation rules.
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TOTAL SEATS: Total number of seats to be allocated, absent provisions for seats to be

added (to ensure proportionality or legislative majority) or that remain unallocated (due to

failure of turnout or threshold provisions).

MAJORITY/PLURALITY BONUS: Binary variable. Takes the value 1 if national

tier allocation reserves extra seats for the party with a majority or plurality of votes.

M.2.1 First tier variables

NSEATS: Maximum number of seats out of TOTAL SEATS potentially allocated in the

first tier.

NDISTRICTS: Number of districts in first tier.

NTHRES: National vote share that must be exceeded to take part in first tier allocation

in any district.

DTHRES: District vote share that must be exceeded to take part in first tier district

allocation.

ALLOCATION FORMULA: Formula used for first tier allocation. Possible values are

• One of Plurality, Majority runoff, Majority plurality: Possible Majoritarian

allocation formulas.

• STV: Single transferable vote method.

• One of Hare, Droop, Hagenbach-Bischoff, Imperiali, 1
n+3

quota: Respective

quota rule with remainders reserved for allocation in an upper tier.
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• One of Hare, Droop, Hagenbach-Bischoff, Imperiali, 1
n+3

LR: Respective quota

rule with largest remainders method applied to allocate seats that cannot be allocated

on the basis of the quota.

• One of D’Hondt, Saint Lague, Modified Saint Lague, Modified D’Hondt:

Highest divisors methods with different divisor sequences.

• Hybrids: Combinations of the above formulas, e.g., Hare LR/Majority.

M.2.2 Tier k=2, 3, 4

Up to 3 additional tiers of allocation are coded. Higher tiers are assigned a value

k = 2, 3, 4, with higher values reserved for coarser geographic partitions of the country (e.g.,

in a country with three increasingly coarser tiers of allocation, the first tier may involve

allocation at the level of the district, tier k = 2 at the level of the state or region, and tier

k = 3 at the level of the country). If allocation occurs at the same level of aggregation

but with two different modes or rules, these tiers are assigned consecutive levels in arbitrary

fashion. For example, the first Greek electoral system (GRC1) involves district allocation

(tier 1), regional allocation of remainders from tier 1 (tier 2), national allocation of remainders

from tier 2 (tier 3), and national allocation of reserved seats in an “at-large” national district

(tier 4), so that tiers 3 and 4 apply to the exact same geographic unit.

For each of the possible tiers k = 2, 3, 4, the following variables are coded:

TIERk: Binary variable; takes the value 1 if there exists a k-th tier, 0 otherwise.

NDISTRICTS: Number of districts in tier k.

ALLOCATION FORMULA: Formula used for tier allocation. Takes the same possible

values as in the first tier formula.
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FIXED SEATS: Binary variable. Takes the value 1 if a predetermined number of seats

are reserved for allocation in this tier, 0 otherwise.

NFSEATS: Predetermined number of seats to be allocated in this tier (if FIXED SEATS

= 1).

NATIONAL ACCESS THRESHOLD: National share of vote that is sufficient to take

part in this tier’s allocation.

TIER 1 DISTRICT ACCESS CONDITION: Lowest tier district vote share condition

that is sufficient for access to this tier’s allocation.

OTHER ACCESS CONDITION: Other condition that is sufficient for access to this

tier’s allocation.
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N Electoral Results Sources

We compile electoral returns data using information from online official sources or

databases of electoral results. We also relied on printed sources, notably Nohlen and Stöver

(2010) and Mackie and Rose (1991), for older elections. If there were discrepancies between

official country sources and the data from these books, we use the information from official

sources. The following is the list of online sources.

N.1 Several Countries

Election Resources on the Internet by Manuel Alvarez Rivera. http://electionresources.

org/

European Election Database. Norgewian Social Science Data Services. http://www.nsd.

uib.no/european_election_database/

PARLINE Database on National Parliaments. http://www.ipu.org/parline-e/parlinesearch.

asp

Psephos Adam Carr’s Election Archive. http://psephos.adam-carr.net/

N.2 Country-specific

Belgium. Federal Portal

2007 Election Results. http://polling2007.belgium.be/en/

2010 Election Results. http://polling2010.belgium.be/en/

Bulgaria. Electoral Commission of Bulgaria. http://rezultati.cik2009.bg/results/

proportional/rik_00.html
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Czech Republic. Czech Statistical Office. http://www.volby.cz/pls/ps2010/ps2?xjazyk=

EN

Croatia. State Electoral Commission of the Republic of Croatia. http://www.izbori.hr/

izbori/ip.nsf/wpds/A51BF17BD1E3B7D5C125742000368C5D?open&1

Cyprus. Parliament of Cyprus. http://http://www.parliament.cy/

France. Ministry of Interior. http://www.interieur.gouv.fr/Elections/Les-resultats/

Legislatives/

Germany. The Federal Returning Officer. http://www.bundeswahlleiter.de/en/bundestagswahlen/

Italy. Ministry of Interior. http://elezionistorico.interno.it/index.php

Macedonia. State Election Commission http://http://217.16.84.11/Default.aspx

Moldova. E-Democracy. http://www.e-democracy.md/elections/parliamentary/

Portugal. National Electoral Commission. http://eleicoes.cne.pt/index.html

Romania. Romanian Electoral Commission. http://www.becparlamentare2008.ro/

Spain. Ministry of Interior. http://www.infoelectoral.interior.es/min/
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O Data Issues – Country Notes

In cases when countries have adopted mixed electoral systems with two distinct par-

titions of the electorate into districts, two separate ballots cast in each election, one for

each partition, and a separate (not necessarily independent) allocation of seats within each

partition, we treat the mixed system as one electoral system using the PR vote as an input

in the German and Hungarian cases in which allocations across the two partitions are not

independent.5 In all other cases, we estimate separate electoral system parameters for each

partition, provided that within that partition the allocation of seats takes the ballot in that

partition as the sole input, independent of the vote outcome in the other partition.

When parties or candidates lumped in the ’others’ category earn seats, we amend

the definition of the upper bound on the realized threshold for election t in (3) to the more

conservative

(10) v̄t := min
i∈{0,1,...,N}

{vt,i | st,i > 0},

where vt,0 := 1 −
∑n

i=1 vt,i and st,0 := St −
∑n

i=1 st,i, the vote share and seat number, re-

spectively, of parties or candidates not separately reported in electoral returns. A number

of electoral systems make special provisions to ensure the representation of minorities, or

special overseas districts (e.g., Finland, Italy, Croatia, Romania, Slovenia). In these cases,

we faced the choice whether or not to include these seats and corresponding votes (if sepa-

rately reported) as part of the estimation. Because these seats are typically allocated using

5A third case of mixed system with a similar dependency structure between the two

partitions is the Italian ‘scorporo’ system. We only estimate the majoritarian partition of

that system (ITA5) primarily due to data difficulties identifying parties competing across

the two partitions.
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special provisions, their inclusion in the analysis can lead to erroneous conclusions about the

nature of competition induced by the electoral system. This is especially the case when very

small minorities are guaranteed representation, thus forcing an inference that the electoral

threshold in effect for all parties is small. We have made efforts to exclude electoral returns

data from special or singular districts reserved for minority or overseas seats for which special

electoral provisions apply. However, ambiguities regarding these exclusions remain in some

cases, primarily due to unavailability of disaggregated results by district or inconsistencies

between different sources.

The following list states exclusions regarding special districts, the treatment of mixed

electoral systems, and any residual ambiguities.

Bulgaria Data include only proportional representation seats in 2009.

Croatia Data exclude minorities and diaspora results. Independent components of mixed

systems in 1992 and 1995 are treated as separate electoral systems.

Germany Data exclude representatives from Berlin before unification. Data include pro-

portional representation votes and total seats (i.e., including SMD seats).

Denmark Data exclude representatives from Faroe islands and Greenland.

Finland Data include district of Aland results.

France Results for Metropolitan France up to 1988. Results including overseas territories

starting with the 1993 election.

Hungary Data include proportional representation votes and total seats (i.e., including

SMD seats).
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Italy Data includes Valle D’Aosta results. For the years 1996 and 2001 in which a mixed

electoral system is used, the data include only the single member district results. Overseas

deputies are excluded.

Lithuania Single member district component of mixed systems is excluded in all elections.

Macedonia Overseas representatives are excluded. The mixed system in place in 1998 is

treated as two separate electoral systems.

Montenegro Ethnic minorities’ representatives are excluded.

Poland Minorities’ representatives are excluded from seat allocation.

Portugal Representatives from Europe and the rest of the World are included.

Romania Overseas results are included for the fourth Romanian system. Minorities’ seats

are excluded in systems ROM2-ROM4.

Serbia Minority seats are excluded.

Slovenia Minority results are excluded.

Ukraine Mixed system components are treated as separate systems.
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